Phương trình hoành độ giao điểm là:
\(x^2-2\left(m-1\right)x+m^2-m=0\)
\(\Delta=\left(2m-2\right)^2-4\left(m^2-m\right)\)
\(=4m^2-8m+4-4m^2+4m=-4m+4\)
Để (P) cắt Ox tại 2 điểm phân biệt thì \(\Delta>0\)
=>-4m+4>0
=>-4m>-4
=>m<1
Phương trình hoành độ giao điểm là:
\(x^2-2\left(m-1\right)x+m^2-m=0\)
\(\Delta=\left(2m-2\right)^2-4\left(m^2-m\right)\)
\(=4m^2-8m+4-4m^2+4m=-4m+4\)
Để (P) cắt Ox tại 2 điểm phân biệt thì \(\Delta>0\)
=>-4m+4>0
=>-4m>-4
=>m<1
Cho parabol (P): y = x2 – 2x + m – 1. Tìm tất cả các giá trị thực của tham số m để parabol cắt Ox tại hai điểm phân biệt có hoành độ dương.
A. 1 < m < 2.
B. m < 2.
C. m > 2.
D. m < 1.
Tìm m sao cho đường thẳng (d): y = -2x cắt Parabol (P): y = x2 -2mx+m2-1 tại hai điểm phân biệt có hoành độ lần lượt là x1, x2 sao cho biểu thức P bằng x1 bình phương cộng x2 bình phương đạt giá trị nhỏ nhất. A. m= 2 B. m=1 C. m=-2 D. m= -1
Tồn tại 2 giá trị m = a, m = b để parabol y = x2 + 4mx + 5m cắt đường thẳng y = 3 tại 2 điểm phân biệt M và N sao cho độ dài đoạn thẳng MN = \(\sqrt{130}\). Tính S = a + b
Gọi S là tập hợp các giá trị của tham số m sao cho parabol (P): y = x 2 - 4 x + m cắt Ox tại hai điểm phân biệt A, B thỏa mãn OA = 3OB. Tính tổng T các phần tử của S.
A. T = 3.
B. T = −15.
C. T = 3 2 .
D. T = −9.
Cho parabol (P): y = x 2 − 4x + 3 và đường thẳng d: y = mx + 3. Tìm giá trị thực của tham số m để d cắt (P) tại hai điểm phân biệt A, B có hoành độ x 1 , x 2 thỏa mãn x 1 3 + x 2 3 = 8
A. m = 2
B. m = -2
C. m = 4
D. Không có m
Cho parabol (P): y = x2 – 2x + m – 1. Tìm tất cả các giá trị thực của tham số m để parabol (P) không cắt trục Ox.
A. m < 2.
B. m > 2.
C.
D.
cho hàm số \(y=x^2-2x-2\) có đồ thị là parabol (P) và đường thẳng d có phương trình y = x - m. giá trị của m để đường thẳng d cắt (P) tại 2 điểm phân biệt A, B sao cho \(OA^2+OB^2\) đạt giá trị nhỏ nhất
Cho hàm số y=\(x^2-2\left(m+1\right)x+2m+1\) (1)
Tìm giá trị của tham số m để đồ thị hàm số (1) cắt trục Ox tại hai điểm phân biệt A,B và cắt trục Oy tại C sao cho tam giác ABC có diện tích bằng 3
Cho parabol \(\left(P\right):y=x^2+2x-3\)và đường thẳng \(\left(d\right):y=x+m\). Tìm tất cả giá trị m để (d) cắt (P) tại hai điểm phân biệt A, B nằm về hai phía của đường thẳng có phương trình y=1