Cho hàm số y = x 2 − 2 x − 2 có đồ thị (P), và đường thẳng (d) có phương trình y = x + m . Tìm m để (d) cắt (P) tại hai điểm phân biệt A, B sao cho O A 2 + O B 2 đạt giá trị nhỏ nhất
A. m = − 5 2
B. m = 5 2
C. m = 1
D. m = 2
1) Cho hàm số: \(y=x^2-3x+4\) có đồ thị là P và đường thẳng d có phương trình:
\(y=2x-m\), và m là tham số. Tìm các giá trị của m để d cắt P tại hai điểm phân biệt \(A,B\) sao cho: \(OA^2+OB^2=57\) và khi đó O là toa độ góc
2) Cho hàm số \(f\left(x\right)=\sqrt{3-x}-\sqrt{3+x}-x^3-x\). Tìm tất cả giá trị của tham số a để tập nghiệm của bất phương trình \(f\left(2x-1\right)>f\left(-2a\right)\) có ít nhất là 3 số nguyên
Xác định tham số của giá trị m trong các trường hợp sau: a) (P): y= x^2+6x-3 và đường thẳng d: y= -2xm-m^2 cắt nhau tại 2 điểm phân biệt A,B sao cho biểu thức P= 5( xA+xB)-2xA.xB đạt giá trị lớn nhất b) (P): y= x^2-2x-2 và đường thẳng d: y= x+m cắt nhau tại 2 điểm phân biệt A,B sao cho OA^2+OB^2 đạt GTNN
Tìm m sao cho đường thẳng (d): y = -2x cắt Parabol (P): y = x2 -2mx+m2-1 tại hai điểm phân biệt có hoành độ lần lượt là x1, x2 sao cho biểu thức P bằng x1 bình phương cộng x2 bình phương đạt giá trị nhỏ nhất. A. m= 2 B. m=1 C. m=-2 D. m= -1
Cho parabol \(\left(P\right):y=x^2+2x-3\)và đường thẳng \(\left(d\right):y=x+m\). Tìm tất cả giá trị m để (d) cắt (P) tại hai điểm phân biệt A, B nằm về hai phía của đường thẳng có phương trình y=1
Viết phương trình đường thẳng d qua M(2;4) và cắt 2 tia Ox, Oy lần lượt tại A,B sao co OA + OB đạt giá trị nhỏ nhất
Biết S = (a,b) là tập hợp tất cả các giá trị của tham số m để đường thẳng y = m cắt đồ thị hàm số y = | \(x^2-4x+3\) | tại bốn điểm phân biệt . Tìm a + b
Cho hàm số y=x²-mx-3(1) a/Tìm m để đồ thị hàm số (1) cắt Õ tại điểm có hoành độ bằng 3 b/lập bảng biến thiên và vẽ đồ thị khi m=-2 c/Tìm tọa độ giao điểm (P) với đường thẳng (d)y=2x+9 d/tìm m để parabol của hàm số có đỉnh nằm trên trục Ox