Từ điểm M nằm ngoài (O) vẽ các tiếp tuyến MA,MB (A, B là các tiếp điểm).Lấy điểm C thuộc cung AB lớn, kẻ AK vuông góc BC tại K. Gọi I là trung điểm của AK, CI cắt (O) tại E khác C. Tia ME cắt (O) tại F
a) CM: OM là tiếp tuyến của đường tròn ngoại tiếp tam giác MEA
b). CM: khi C di chuyển trên cung AB lớn thì EF có độ dài không đổi
Cho đường tròn (O;3) điểm M nằm bên ngoài đg tròn .Qua M kẻ tiếp tuyến MA,MB với đg tròn (A,B thuộc đg tròn sao cho góc AMB=60°) a, ∆AMB là hình gì ?VS? b. Qua C trên cung nhỏ AB kẻ tiếp tuyến vs đg tròn cắt MA,MB lần lượt tại N và Q .Tính góc NOQ c. Tính chu vi ∆MNQ
Cho đường tròn (O; R). Điểm M ở bên ngoài đường tròn sao cho OM= 2R. Kẻ hai tiếp tuyến MA, MB tời đường tròn (A;B là các tiếp điểm). Nối OM cắt AB tại H. Hạ HD vuông góc MA tại D. Điểm C thuộc cung nhỏ AB. Tiếp tuyến tại C của đường tròn (O;R) cắt MA, MB lần lượt tại E và F. Đường tròn đường kính BM cắt BD tại I. Gọi K là trung điểm của OA. Chứng minh ba điểm M, I, K thẳng hàng
Cho đường tròn (O; R), lấy điểm M nằm ngoài (O) sao cho OM = 2R. Từ M kẻ tiếp tuyến MA và MB với (O) (A, B là các tiếp điểm).
a, Tính A O M ^
b, Tính A O B ^ và số đo cung A B ⏜ nhỏ
c, Biết đoạn thẳng OM cắt (O) tại C. Chứng minh C là điểm giữa của cung nhỏ A B ⏜
Giúp mình với ạ Cho đường tròn (O; R) và điểm M nằm ngoài đường tròn sao cho hai tiếp tuyến MA, MB của (O) vuông góc với nhau (A, B là các tiếp điểm). Gọi C là một điểm thuộc cung nhỏ AB. Tiếp tuyến của (O) tại C cắt AM, BM lần lượt P, Q. a) Tính theo R chu vi AMPQ và POQ b) Chứng minh BOC=2.QCB
Cho đường tròn (O; R) và điểm M nằm ngoài đường tròn sao cho hai tiếp tuyến MA, MB của (O) vuông góc với nhau (A, B là các tiếp điểm). Gọi C là một điểm thuộc cung nhỏ AB. Tiếp tuyến của (O) tại C cắt AM, BM lần lượt P, Q.
a) Tính theo R chu vi AMPQ và POQ
b) Chứng minh BOC = 2QCB
Cho đường tròn tâm O điểm m cố định ngoài ô vẽ hai tiếp tuyến MA MB với đường tròn tâm O trên cung nhỏ AB lấy điểm M.kẻ tiếp tuyến MA và MB. trên cung nhoe AB lấy N kẻ tt tại N cắt MA và MB tại E và F Gọi K là giao điểm của AE và góc với AB Cho góc AOB bằng 120 độ Tính tỉ số EF/ IK
cho điểm A ở ngoài đường tròn (O;R). Kẻ tiếp tuyến AB (B là tiếp điểm ) và cát tuyến AMN ( M nằm giữ A và N ). Gọi I là trung điểm của MN . Qua B kẻ dây cung vuông góc vs OA tại H và cắt ( O) tại C
a, Cho R= 6cm , OA = 10cm. Tính độ dài AB
b, Chứng minh : 4 điểm A, B , I,O cùng thuộc 1 đường tròn . Xác định tâm bán kính của đường tròn đó .
Cho đường tròn tâm O, điểm M cố định nằm ngoài (O), kẻ 2 tiếp tuyến MA,MB với (O) ( A,B là tiếp điểm ). Trên cung nhỏ AB lấy điểm N và từ N kẻ tiếp tuyến với (O) cắt MA,MB lần lượt tại E và F
1) Chứng minh tứ giác AONE nội tiếp
2) Chứng minh chu vi tam giác MEF và độ lớn góc EOF không phụ thuộc vị trí điểm N
3) Gọi I,K lần lượt là giao điểm của OE và OF với AB. Cho \(\widehat{AOB}\)= 120 độ, tính tỉ số \(\frac{EF}{IK}\)
4) Đường thẳng qua O vuông góc với OM cắt MA,MB lần lượt tại C và D. Tìm vị trí điểm N để ( EC+FD ) có độ dài nhỏ nhất