a: góc ADB=góc ACB=1/2*180=90 độ
=>BD vuông góc AM
Xét ΔBAM có
BD vừa là đường cao, vừa là trung tuyến
=>ΔBAM cân tại B
b: Xét ΔAMH có
HD,MC là đường cao
HD cắt MC tại B
=>B là trực tâm
=>AB vuông góc MH
a: góc ADB=góc ACB=1/2*180=90 độ
=>BD vuông góc AM
Xét ΔBAM có
BD vừa là đường cao, vừa là trung tuyến
=>ΔBAM cân tại B
b: Xét ΔAMH có
HD,MC là đường cao
HD cắt MC tại B
=>B là trực tâm
=>AB vuông góc MH
Cho (O) đường kính AB, dây cung AD > DB, kéo dài AD một đoạn DM = AD.
BM cắt (O) tại C, gọi H là giao điểm của AC và BD.
a) Chứng minh: AB = BM
b) Chứng minh: MH vuông góc AB tại
c) Gọi K là tâm đường tròn ngoại tiếp tứ giác DCHM. Chứng minh: DK là tiếp
tuyến của (O)
Cho (O) đường kính AB, dây cung AD > DB, kéo dài AD một đoạn DM = AD.
BM cắt (O) tại C, gọi H là giao điểm của AC và BD.
a) Chứng minh: AB = BM
b) Chứng minh: MH vuông góc AB tại
c) Gọi K là tâm đường tròn ngoại tiếp tứ giác DCHM. Chứng minh: DK là tiếp
tuyến của (O)
CHo 2 đoạn thẳng AB,AC vuông góc với nhau (AB<AC).Vẽ đường tròn tâm O đường kính AB và đường tròn tâm O' đường kính AC. Gọi D là giao điểm thứ 2 của 2 đường tròn đó
a, chứng minh 3 điểm B,D,C thẳng hàng
b, gọi giao điểm của OO' và cung tròn AD của (O) là N. Chứng minh AN là tia phân giác của góc DAC
c, tia AN cắt đường tròn tâm O' tại M, gọi I là trung điểm của MN. Chứng minh tứ giác AOO'I nội tiếp đường tròn
Cho đường tròn tâm O bán kính R và dây AB. Vẽ đường kính CD vuông góc với AB tại K. M là điểm thuộc cung nhỏ BC. Gọi F là giao điểm của DM và AB.
a) Chứng minh rằng tứ giác CKFM là tứ giác nội tiếp
b) Chứng minh rằng: \(AD^2\) = DF. DM
Cho tam giác ABC nhọn nội tiếp đường tròn tâm O bán kính R. Đường cao AD, BE cắt nhau tại H. Kéo dài BE cắt đường tròn (O) tại F.
1)Chứng minh tứ giác CDHE là tứ giác nội tiếp
2) Kéo dài AD cắt (O) tại N. Chứng minh ∆AHF cân và C là điểm chính giữa cung NF
3) Gọi M là trung điểm của cạnh AB. Chứng minh ME là tiếp tuyến của đường tròn ngoại tiếp ∆CDE
Cho đường tròn (O) tâm O đường kính AB. Lấy hai điểm phân biệt C và D thuộc đường tròn (O); biết C và D nằm khác phía đốt với đường thẳng AB. Gọi E,F tương ứng là trung điểm của hai dây AC, AD.
1) Chứng minh AC^2 + CB^2 = AD^2 + DB^2.
2) chứng minh tứ giác AEOF nội tiếp đường tròn. Xác định tâm đường tròn ngoại tiếp tứ giác AEOF.
3) Đường thẳng EF cắt đường tròn ngoại tiếp ADE tại điểm K khác E.
Chứng minh đường thẳng DK là tiếp tuyến của đường tròn (O). Tìm điều kiện của tam giác ACD để tứ giácAEDK là hình chữ nhật
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn ( O ). Ba đường cao AD,BE,CF cắt nhau tại H.
a) Chứng minh tứ giác ABDE là tứ giác nội tiếp. Xác định tâm S của đường tròn ngoại tiếp tứ giác ABDE.
b) Vẽ đường kính AK của ( O ). Chứng minh : AB×AC = AD×AK
c) Gọi I là trung điểm của HC. Chứng minh ST vuông góc ED.
d) Đường phân giác trong của góc BAC cắt BC tại M và cắt đường tròn ( O ) tại N ( N khác A ). Gọi I là tâm đường tròn nội tiếp tam giác ACM.
Gọi L là giao điểm của đường tròn ( O ) và CL. Chứng minh : N,O,L thẳng hàng.
e) Chứng minh ANKL là hình chữ nhật.
BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp
BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp
BÀI 3 :Cho hai đoạn thẳng MN và PQ cắt nhau tại O .Biết OM.ON= PO.OQ.Chứng minh tứ giác MNPQ nội tiếp
BÀI 4: Cho tam giác ABC có đường cao AH . Gọi M, N lần lượt là hình chiếu vuông góc của H lên các cạnh AB, AC
a) c/m AMHN nội tiếp
b) BMNC nội tiếp
BÀI 5: Cho tam giác ABC các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N .chứng minh BMCN nội tiếp
BÀI 6: Cho đường tròn (O) đường kính AB .Gọi M là một điểm trên tiếp tuyến xBy , đường thẳng AM cắt đường tròn (O) tại C , lấy D thuộc BM, nối AD cắt (O) tại I. c/m CIDM nội tiếp
BÀI 7: Cho đường tròn tâm (O) có cung EH và S là điểm chính giữa cung đó .Trên dây EH lấy hai điểm A và B .Các đường thẳng SA và SB cắt đường tròn lần lượt tại D và C .c/m ABCD là tứ giác nội tiếp
BÀI 8: Cho đường tròn (O) đường kính AB , từ A và B vẽ Ax vuông góc AB và By vuông góc BA (Ax và By cùng phía so với bờ AB ) .Vẽ tiếp tuyến x'My' (tiếp điểm M) cắt Ax tại C và By tại D ; OC cắt AM tại I và OD cắt BM tại K .Chứng minh CIKD nội tiếp
Cho đường tròn tâm O bán kính R đường kính MN. Vẽ dây cung AB =R; MA và NB kéo dài cắt nhau tại E a) Tính số đo cung AB nhỏ và số đo của góc MEN b) Gọi H là giao điểm của MB và NA. Chứng minh tứ giác EAHB nội tiếp c) Chứng minh MH.MB+NH.NA = 4R bình phương