a: ΔOCD cân tại O
mà OI là đường cao
nên I là trung điểm của CD
Xét ΔCOA có
CI vừa là đường cao, vừa là đường trung tuyến
Do đó: ΔCOA cân tại C
Xét ΔCAO cân tại C có OA=OC
nên ΔCAO đều
=>\(\widehat{OCA}=60^0\)
Xét tứ giác OCAD có
I là trung điểm chung của OA và CD
Do đó: OCAD là hình bình hành
mà OC=OD
nên OCAD là hình thoi
=>\(\widehat{OCA}+\widehat{COD}=180^0\)
=>\(\widehat{COD}=120^0\)
Xét ΔOCD có \(\dfrac{CD}{sinCOD}=\dfrac{OC}{sinODC}\)
=>\(\dfrac{CD}{sin120}=\dfrac{R}{sin30}\)
=>\(CD=2R\cdot sin120=\sqrt{3}\cdot R\)
b: ΔOAC đều
=>\(\widehat{AOC}=60^0\)
c: \(\widehat{COD}=120^0\)
=>số đo cung nhỏ CD là 120 độ
Số đo cung lớn CD là:
360 độ-120 độ=240 độ