Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
pansak9

Cho nửa đường tròn tâm O, đkinh AB. Vẽ các tiếp tuyến Ax, By của nửa đtron. Kẻ tiếp tuyến tại M là 1 điểm bất kì thuộc nửa đtron. Tiếp tuyến này cắt Ax, By tại C,D. CMR đtron đkinh CD tiếp xúc với AB.

Nguyễn Lê Phước Thịnh
28 tháng 11 2023 lúc 14:46

Xét (O) có

CA,CM là tiếp tuyến

Do đó: OC là phân giác của \(\widehat{MOA}\)

=>\(\widehat{MOA}=2\cdot\widehat{MOC}\)

Xét (O) có

DM,DB là tiếp tuyến

Do đó: OD là phân giác của góc MOB

=>\(\widehat{MOB}=2\cdot\widehat{MOD}\)

\(\widehat{MOA}+\widehat{MOB}=180^0\)(hai góc kề bù)

=>\(2\cdot\left(\widehat{MOD}+\widehat{MOC}\right)=180^0\)

=>\(2\cdot\widehat{DOC}=180^0\)

=>\(\widehat{DOC}=90^0\)

=>ΔDOC vuông tại O

Gọi N là trung điểm của CD

ΔOCD vuông tại O

=>ΔOCD nội tiếp đường tròn đường kính CD

mà N là trung điểm của CD

nên ΔOCD nội tiếp (N)

Xét hình thang ACDB có

O,N lần lượt là trung điểm của AB,CD

=>ON là đường trung bình của hình thang ACDB

=>ON//AC//BD

=>ON\(\perp\)AB tại O

Xét (N) có

NO là bán kính

AB\(\perp\)NO tại O

Do đó:AB là tiếp tuyến của (N)

=>Đường tròn đường kính CD tiếp xúc với AB


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Siin
Xem chi tiết
Nguyễn Phương Thảo
Xem chi tiết
Tung
Xem chi tiết
shanyuan
Xem chi tiết
Tiểu Đào
Xem chi tiết
pansak9
Xem chi tiết
Linh
Xem chi tiết
Fire Free
Xem chi tiết