Cho nửa đường tròn tâm O có đường kính AB=2R. Kẻ 2 tiếp tuyến Ax, By của nửa đường tròn (O) tại A và B. Qua điểm M thuộc nửa đường tròn ( M khác A và B ) kẻ tiếp tuyến với nửa đường tròn, cắt tia Ax, By theo thứ tự tại C và D.
a, Chứng minh tam giác COD vuông tại O
b, Chứng minh tích AC.BD không đổi khi M di chuyển trên nửa đường tròn
cho vừa đường tròn vừa đường kính ab = 2r. kẻ 2 tiếp tuyến ax, by. gọi m là 1 diểm thuộc đường tròn ( m khác a, b ) tiếp tuyến tại m với nửa đường tròn cắt ax, by
a, CMR: góc COD =90 độ
b, C/m BDMO cân thuộc đường tròn chỉ ra bán kính của đường tròn
c, C/m CD= BC+BD
AC không đổi khi M thay đổi trên O Ab là tiếp tuyến cảu nửa đường tròn đường kính CD
cho vừa đường tròn vừa đường kính ab = 2r. kẻ 2 tiếp tuyến ax, by. gọi m là 1 diểm thuộc đường tròn ( m khác a, b ) tiếp tuyến tại m với nửa đường tròn cắt ax, by
a, CMR: góc COD =90 độ
b, C/m BDMO cân thuộc đường tròn chỉ ra bán kính của đường tròn
c, C/m CD= BC+BD
AC không đổi khi M thay đổi trên O Ab là tiếp tuyến cảu nửa đường tròn đường kính CD
Cho nửa đường tròn tâm (O), đường kính AB=2R, M là một điểm tùy ý trên nửa đường tròn(M#A;B).Kẻ hai tia tiếp tuyến Ax và By với nửa đườngtròn.Qua M kẻ tiếp tuyến thứ ba lần lượt cắt Ax và By tại C;D.
a)CM:CD=AC+BD và góc COD=900
b)CM: AC.BD=R2
c)OC cắt AM tại E, OD cắt bm tại F.CM: EF=R
d)Tìm vị trí của M để CD có độ dài nhỏ nhất
cho nửa đường tròn đường kính ab trên cùng 1 nửa mặt phẳng vẽ 2 tiếp tuyến Ax By trên nửa đường tròn lấy điểm M vẽ tiếp tuyến tại M cắt Ax tại C và cắt By tại D.Nối AM và OC cắt nhau tại K, MB và OD cắt nhau tại I.
C/m: a/MKOI là hình chữ nhật
b/KI vuông góc vs AC
c/t/giác OAC đồng dạng vs t/giác DBOCho nửa đường tròn (O;R) đường kính AB. Trên đoạn Ao lấy điểm C, vẽ tia Cx vuông góc với AB, tia Cx cắt nửa đường tròn (O) tại D, Trên cung BD lấy điểm M. kẻ tia BM cắt Cx tại E. Giao điểm của AM và Cx là H , tia BH cắt nửa đường tròn (O) ở N. Gọi I là trung điểm của EH
a. CMR: H là trực tâm của tam giác ABEb. CMR: NI là tiếp tuyến của nửa đường tròn (O)c.CMR: khi M chuyển động trên cung BD thì đường thẳng MN luôn đi qua 1 điểm cố địnhcho nửa đường tròn (O ; R), đường kính AB. Kẻ các tiếp tuyến tại A và B với nửa đường tròn. Qua điểm M thuộc nửa đường tròn ( M khác A và B) kẻ tiếp tuyến thứa 3 cắt các tiếp tuyến tại A và B lần lượt tại C và D . Chứng minh
a) CD = CA + DB
b) Tam giác COD là tam giác vuông
c) AB là tiếp tuyến của đường tròn đường kính CD
giúp mk với
Cho nửa đường tròn tâm O, đường kính AB. Lấy OA làm đường kính, vẽ nửa đường tròn nằm trên nửa mặt phẳng bờ AB chứa nửa đường tròn tâm O. Trên nửa đường tròn đường kính OA lấy điểm C không trùng với A và O, tia OC cắt nửa đường tròn tâm O tại D. Vẽ DH vuông góc với AB. CHứng minh AHCD là hình thang cân
Cho nửa đường tròn tâm O, đường kính AB. Vẽ 2 tiếp tuyến Ax; By của nửa (O). Gọi C là điểm trên nửa (O) sao cho AC > BC. Tiếp tuyến tại C của nửa (O) cắt Ax; By lần lượt tại D; E.
a) Chứng minh: Tam giác ABC vuông và AD + BE = ED.
b) Chứng minh: 4 điểm A; D; C; O cùng thuộc 1 đường tròn và gócADO = gócCAB.
c) DB cắt nửa (O) tại F và cắt AE tại I. Tia CI cắt AB tại K. Chứng minh: IC = IK.
d) Tia AF cắt tia BE tại N, gọi M là trung điểm của BN. Chứng minh: 3 điểm A; C; M thẳng hàng.