Cho nửa đường tròn \(O\) , đường kính AB = 2R. Gọi Ax, By là các tiếp tuyến của nửa đường tròn ( Ax, By và nửa đường tròn cùng thuộc một nửa mặt phẳng bờ AB ). lấy điểm M thuộc nửa đường tròn ( M khác A và B). Tiếp tuyến tại M cắt Ax, By lần lượt tại C, D.
a) Chứng minh: \(CD=AC+BD\) và △\(COD\) vuông.
b) Chứng minh: \(AC.BD=R^2\).
c) Gọi N là giao điểm AD và BC. Chứng minh: MN ⊥ AB.
a: Xét (O) có
CM,CA là các tiếp tuyến
Do đó: CM=CA và OC là phân giác của góc MOA
Xét (O) có
DM,DB là các tiếp tuyến
Do đó: DM=DB và OD là phân giác của góc MOB
OC là phân giác của góc MOA
=>\(\hat{MOA}=2\cdot\hat{MOC}\)
OD là phân giác của góc MOB
=>\(\hat{MOB}=2\cdot\hat{MOD}\)
Ta có: \(\hat{MOA}+\hat{MOB}=180^0\) (hai góc kề bù)
=>\(2\left(\hat{MOD}+\hat{MOC}\right)=180^0\)
=>\(2\cdot\hat{COD}=180^0\)
=>\(\hat{COD}=90^0\)
=>ΔOCD vuông tại O
Ta có: CM+MD=CD
mà CM=CA và DM=DB
nên CA+DB=CD
b: Xét ΔOCD vuông tại O có OM là đường cao
nên \(MC\cdot MD=OM^2\)
=>\(AC\cdot BD=OM^2=R^2\)
c: Xét ΔNCA và ΔNBD có
\(\hat{NCA}=\hat{NBD}\) (hai góc so le trong, CA//DB)
\(\hat{CNA}=\hat{BND}\) (hai góc đối đỉnh)
Do đó: ΔNCA~ΔNBD
=>\(\frac{NC}{NB}=\frac{NA}{ND}=\frac{AC}{BD}=\frac{CM}{MD}\)
Xét ΔCBD có \(\frac{CM}{MD}=\frac{CN}{NB}\)
nên MN//BD
mà BD⊥AB
nên MN⊥AB