Cho tam giác ABC vuông tại A có \(\widehat{B}=60^o\). Vẽ AH ⊥ BC tại H.
b)Trên cạnh AC lấy điểm D sao cho AD = AH. Gọi I là trung điểm của cạnh HD. Chứng minh ∆AHI = ∆ADI. Từ đó suy ra AI ⊥ HD .
c)Tia AI cắt cạnh HC tại điểm K. Chứng minh ∆AHK = ∆ ADK từ đó suy ra AB // KD
d) Trên tia đối của tia HA lấy điểm E sao cho HE = AH. Chứng minh H là trung điểm của BK và ba điểm D, K, E thẳng hàngBài 4: Cho ΔABC vuông tại A, đường phân giác BD (BDϵAC). Từ D kẻ DH vuông góc với BC.
a) C/m ΔABD=ΔHBD.
b) So sánh AD và DC.
c) Gọi K là giao điểm của đường thẳng AB và DH, I là trung điểm của KC. C/m 3 điểm B, D, I Thẳng hàng.
Cho tam giác ABC Vuông tại A có B=60. Vẽ AH vuông vs BC tại H
a ) Tính HAB
B)Trên cạnh AC lấy điểm D sao cho AD=AH. Gọi I là trung điểm của cạnh HD. Chứng minh tam giác AHI=Tam giác ADI. Tuừ đó suy ra AI vuông vs HD
c) Tia AI cắt cạnh HC tại điểm K. Chứng minh tam giác AHK=tam giác ADK từ đó suy ra AK // KD
d) Trên tia đối của tia HA lấy điểm E sao cho HE=AH. Chứng minh H là trung điểm của BK và ba điểm D,K,E thẳng hàng
Bài 4. Cho tam giác ABC nhọn có trung tuyến AM. Gọi D là điểm thuộc tia AM sao cho M là trung điểm của AD. a) Chứng minh triangle MAC = triangle MDB. Từ đó suy ra BD//AC. b) Gọi N là trung điểm của AC. Đường thẳng MN cắt BD tại K. Chứng minh M là trung điểm của KN. c) Gọi I, P lần lượt là trung điểm của AK và AB. Chứng minh ba đường thẳng AM, CP, Ni đồng quy.
Cho △ABC cân tại A có ∠A = 40 độ . Trên cạnh AB lấy điểm D , trên tia đối của tia CA lấy điểm E sao cho BD = CE . Kẻ DH và EK vuông góc với đường thẳng BC ( H , K nằm trên đường thẳng BC )
a) Tính số đo góc B và góc C của △ABC
b) CM : △DBH = △ECK . Từ đó suy ra DH = EK
c) Gọi M là trung điểm của HK . CM : M là trung điểm của DE
Cho tam giác ABC vuông tại A và có đường phân giác BD. Kẻ đường thẳng DH vuông
góc với BC tại điểm H. Trên tia đối của tia AB lấy điểm K sao cho AK = CH.
1. Chứng minh ba điểm H,D,K thẳng hàng và chứng minh BD vuông góc với KC.
2. (*) Chứng minh rằng 2(AD + AK) > CK.
Cho tam giác ABC nhọn. Vẽ đường thẳng xy qua A và song song với BC. Từ B vẽ BD ⊥ AC ở D, BD cắt xy tại E. Trên tia BC lấy điểm F sao cho BF = AE
a) CMR: EF = AB và EF // AB
b) Từ F vẽ FK ⊥ BE ở K. CM: FK = AD
c) Gọi I là trung điểm của KD. Chứng minh ba điểm A,I,F thẳng hàng
d) Gọi M là trung điểm của đoạn thẳng AB, MI cắt EF tại N. CM: N là trung điểm của EF
Bài 2: Cho DABC cân tại A. Kẻ AH ^ BC tại H.
a) Chứng minh: DABH = DACH.
b) Vẽ trung tuyến BM. Gọi G là giao điểm của AH và BM. Chứng minh G là trọng tâm của DABC.
c) Từ H kẻ HD song song với AC ( D thuộc AB ). Chứng minh ba điểm C, G, D thẳng hàng
Cho đường thẳng a . trên cùng một nửa mặt phẳng có bờ là đường thẳng a lấy hai điểm A và B . Từ A vẽ AH vuông góc với đường thẳng a (H thuộc a) . Trên tia đối của tia HA lấy điểm C sao cho HC= HA.Từ B kẻ BK vuông góc với đường thẳng a(K thuộc a). Trên tia đối của tia KB lấy điểm D sao cho KB=KD . Đoạn thẳng KD cắt đường thẳng a tại E . Nối E với C và B.
a, CMR: EA=EC và ED=EB
b, Chứng minh C, E,B thẳng hàng
c, Gọi M là trung điểm của đoạn thẳng AB,N là trung điểm của đoạn thẳng CD . Chứng minh EM=EN