\(P=3+2^2+2^3+...+2^{2023}\)
\(2P=2\cdot\left(3+2^2+2^3+...+2^{2023}\right)\)
\(2P=6+2^3+2^4+...+2^{2024}\)
\(2P-P=\left(6+2^3+2^4+...+2^{2024}\right)-\left(3+2^2+2^3+...+2^{2023}\right)\)
\(P=\left(2^3-2^3\right)+\left(2^4-2^4\right)+...+\left(6-3\right)+\left(2^{2024}-2^2\right)\)
\(P=3+2^{2024}-2^2\)
\(P=3+2^{2024}-4\)
\(P=2^{2024}-1\)