Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Không muốn nói

Cho mình hỏi cách chứng minh bất đẳng thức Cauchy (Cô-si) : 

\(\frac{a+b}{2}\ge\sqrt{ab}\)

Nhân tiện cho mình hỏi chứng minh không có giá trị nào của x,y,z thoả mản đẳng thức sau :

\(x^2+4y^2+z^2-2a+8y-6z+15=0\)

 

Trần Việt Anh
4 tháng 2 2017 lúc 13:49

BĐT Cosi cho 2 số a,b >0: 
a + b >= 2căn(ab) 

di từ: ( √a - √b)² ≥ 0 ( voi moi a , b ≥ 0 ) 

<=> a + b - 2√(ab) ≥ 0 

<=> a + b ≥ 2√(ab) 
dau "=" xay ra khi √a - √b = 0 <=> a = b 
 

(a+b)/2 >=Cab(C là căn) 
a+b>=2*Cab 
(a+b)^2>=4*ab 
a^2+2ab+b^2-4ab>=0 
a^2-2ab+b^2>=0 
(a-b)^2>=0(luôn đúng) 
vây ta được điều cm 
Đây chính là bất đẳng thức côsi 2 số mà bạn 

Trần Việt Anh
4 tháng 2 2017 lúc 13:53

(a+b)/2 >=Cab(C là căn) 
a+b>=2*Cab 
(a+b)^2>=4*ab 
a^2+2ab+b^2-4ab>=0 
a^2-2ab+b^2>=0 
(a-b)^2>=0(luôn đúng) 
vây ta được điều cm 
Đây chính là bất đẳng thức côsi 2 số mà bạn 

Nguyễn Minh Đăng
7 tháng 6 2020 lúc 20:26

Bài làm:

*CM bất đẳng thức Cauchy

Ta có: \(\left(x-y\right)^2\ge0\)(luôn đúng với mọi x,y)

\(\Leftrightarrow x^2-2xy+y^2\ge0\)

\(\Leftrightarrow x^2-2xy+y^2+4xy\ge4xy\)

\(\Leftrightarrow x^2+2xy+y^2\ge4xy\)

\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow\frac{\left(x+y\right)^2}{4}\ge xy\)

\(\Leftrightarrow\sqrt{\frac{\left(x+y\right)^2}{4}}\ge\sqrt{xy}\)

\(\Leftrightarrow\frac{x+y}{2}\ge\sqrt{xy}\)

Mình chứng minh theo cách đặt biến x,y nhé!

*Chứng minh không có giá trị nào của x,y,z thỏa mãn đẳng thức: (Đề bạn chép nhầm biến x thành a nhé)

Ta có:

\(x^2+4y^2+z^2-2x+8y-6z+15=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(4y^2+8y+1\right)+\left(z^2-6z+9\right)+4=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(2y+1\right)^2+\left(z-3\right)^2+4=0\)\(\left(1\right)\)

Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(2y+1\right)^2\ge0\\\left(z-3\right)^2\ge0\end{cases}}\)với mọi x,y,z

\(\Rightarrow\left(x-1\right)^2+\left(2y+1\right)^2+\left(z-3\right)^2\ge0\)với mọi x,y,z

\(\Leftrightarrow\left(x-1\right)^2+\left(2y+1\right)^2+\left(z-3\right)^2+4\ge4>0\)với mọi x,y,z \(\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\)\(\Rightarrow\)Mâu thuẫn\(\Rightarrow\)Không tồn tại bất kỳ giá trị nào của x,y,z thỏa mãn đẳng thức trên

=> điều phải chứng minh

Học tốt!!!!

Khách vãng lai đã xóa

Các câu hỏi tương tự
chuche
Xem chi tiết
tth_new
Xem chi tiết
Vũ Thu Mai
Xem chi tiết
chuche
Xem chi tiết
Mun Pek
Xem chi tiết
Trí Tiên
Xem chi tiết
Hoàng Tử Lớp Học
Xem chi tiết
Hoàng Tử Lớp Học
Xem chi tiết
Euro 2016
Xem chi tiết