Lời giải:
Ta thấy, với $a,b,c>0$ thì:
$\frac{a}{a+b}> \frac{a}{a+b+c}$
$\frac{b}{b+c}> \frac{b}{b+c+a}$
$\frac{c}{c+a}> \frac{c}{c+a+b}$
Cộng theo vế 3 BĐT trên suy ra:
$M> \frac{a}{a+b+c}+\frac{b}{b+c+a}+\frac{c}{c+a+b}=1$
Vậy ta có đpcm.
Lời giải:
Ta thấy, với $a,b,c>0$ thì:
$\frac{a}{a+b}> \frac{a}{a+b+c}$
$\frac{b}{b+c}> \frac{b}{b+c+a}$
$\frac{c}{c+a}> \frac{c}{c+a+b}$
Cộng theo vế 3 BĐT trên suy ra:
$M> \frac{a}{a+b+c}+\frac{b}{b+c+a}+\frac{c}{c+a+b}=1$
Vậy ta có đpcm.
Cho ba số a, b, c khác nhau và khác 0 thỏa mãn điều kiện: \(\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}\) chứng minh rằng \(M=\dfrac{b+c}{a}=\dfrac{a+c}{b}=\dfrac{a+b}{c}\)
Cho ba số a, b, c khác nhau và khác 0 thỏa mãn điều kiện: \(\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}\) chứng minh rằng \(M=\dfrac{b+c}{a}=\dfrac{a+c}{b}=\dfrac{a+b}{c}\)
Cho ba số a, b, c khác nhau và khác 0 thỏa mãn điều kiện: \(\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}\) chứng minh rằng \(M=\dfrac{b+c}{a}=\dfrac{a+c}{b}=\dfrac{a+b}{c}\)
\(M=\dfrac{3^6.45^4-15^4.9^4}{27^4.25^3+7.45^6}\)
Cho a+b+c=2010 và \(\dfrac{1}{a+b}+\dfrac{1}{a+b}+\dfrac{1}{c+a}=\dfrac{1}{201}TínhS=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
cho 6 số nguyên dương a,b,c,d,m,n thỏa mãn:
a<b<c<d<m<n
chứng minh rằng \(\dfrac{a+c+m}{a+b+c+d+m+n}< \dfrac{1}{2}\)
Cho \(\dfrac{1}{c}=\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\left(a;b;c\ne0;b\ne c\right).\) Chứng minh: \(\dfrac{a}{b}=\dfrac{a-c}{c-b}\)
cho:\(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}\)
tính giá trị biểu thức :
\(M=\dfrac{a+b}{c+d}=\dfrac{b+c}{d+a}=\dfrac{c+d}{a+b}=\dfrac{d+a}{b+c}\)
Cho \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\) với ( với a, b, c, d khác 0, và c \(\ne\pm d\) ). Chứng minh rằng hoặc \(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc \(\dfrac{a}{b}=\dfrac{d}{c}\) ?
Cho các số hữu tỉ \(\dfrac{a}{b}\)và\(\dfrac{c}{d}\) với mẫu dương, trong đó \(\dfrac{a}{b}\)<\(\dfrac{c}{d}\). Chứng minh rằng:
A) ad<bc
B) \(\dfrac{a}{b}\)<\(\dfrac{a+c}{b+d}\)< \(\dfrac{c}{d}\)
Cho các số thực dương a,b,c thỏa mãn a+b+c ≤ \(\dfrac{1}{3}\) , chứng minh rằng
a+b+c+\(\dfrac{1}{a}\)+ \(\dfrac{1}{b}\) + \(\dfrac{1}{c}\) ≥ \(\dfrac{82}{3}\)