Cho hình vuông ABCD có cạnh = 6a
a) tính độ dài các vecto sau \(\overrightarrow{u}=\overrightarrow{AB}-\overrightarrow{AC}\) ; \(\overrightarrow{v}=\overrightarrow{BC}+\overrightarrow{BD}\)
b) tính các tích vô hương sau : \(\overrightarrow{AB}.\overrightarrow{AC}\); \(\overrightarrow{BD}.\overrightarrow{AC}\);\(\overrightarrow{AB}.\overrightarrow{CD}\)
Cho tam giác ABC đều cạnh a, trọng tâm G.
a) Tính \(\overrightarrow{BA}-\overrightarrow{BC}\)
b) Tính dộ dài vecto \(\left|\overrightarrow{AB}-\overrightarrow{GC}\right|\)
Cho lục giác đều $A B C D E F$ tâm $O$. Chứng minh: $\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}+\overrightarrow{O D}+\overrightarrow{O E}+\overrightarrow{O F}=\overrightarrow{0}$.
Cho tam giác ABC có O,G,H lần lượt là tâm đường tròn ngoại tiếp,trọng tâm,trực tâm và I là tâm đường tròn đi qua các trung điểm của ba cạnh tam giác.Chứng minh các hệ thức sau
a)\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{OH}\)
b)\(\overrightarrow{OH=3\overrightarrow{OG}}\)
c)\(\overrightarrow{HA}+\overrightarrow{HB}+\overrightarrow{HC}=2\overrightarrow{OH}\)
d)\(\overrightarrow{OH}=2\overrightarrow{OI}\)
Cho tam giác đều ABC, tâm O. M là một điểm bất kì trong tam giác. Hình chiếu vuông góc của M xuống 3 cạnh của tam giác là D, E, F. Từ M kẻ ba đường thẳng song song với 3 cạnh của tam giác. Các giao điểm với các cạnh lần lượt là: I, J, K, L, P, Q (D là trung điểm IQ; E là trung điểm KP; E là trung điểm KP; F là trung điểm LJ). Chứng minh:
\(\overrightarrow{MD}=\frac{\overrightarrow{MI}+\overrightarrow{MQ}}{2}\);\(\overrightarrow{ME}=\frac{\overrightarrow{MK}+\overrightarrow{MP}}{2}\);\(\overrightarrow{MF}=\frac{\overrightarrow{MJ}+\overrightarrow{ML}}{2}\)
Cho M,N,P,Q
C/m nếu :
a) \(\overrightarrow{MN}=\overrightarrow{PQ}\)thì \(\overrightarrow{MP}=\overrightarrow{NQ}\)
b) \(\overrightarrow{NP}+\overrightarrow{MN}=\overrightarrow{QP}+\overrightarrow{MQ}\)
c) \(\overrightarrow{MN}+\overrightarrow{PQ}=\overrightarrow{MQ}+\overrightarrow{PN}\)
Giúp e những bài này với ạ
1) Cho tam giác ABC. GỌI N, H, V là ba điểm thỏa mãn:
\(\overrightarrow{NB} \)-2\(\overrightarrow{NC} \)=\(\overrightarrow{0} \)
\(2\overrightarrow{HC}+\overrightarrow{HA}=\overrightarrow{0} \)
\(\overrightarrow{VA}+\overrightarrow{VB}=\overrightarrow{0} \)
b) chứng minh n,h,v thẳng hàng
2) Cho tam giác ABC nội tiếp đường tròn tâm O. Gọi G và H lần lượt là trọng tâm và trực tâm của tam giác ABC. Còn M là trung điểm BC.
a) so sánh 2 vecto \(\overrightarrow{HA},\overrightarrow{MO} \)
b) Chứng minh rằng :
i) \(\overrightarrow{HA}+\overrightarrow{HB}+\overrightarrow{HC}=2\overrightarrow{HO} \)
ii)\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=3\overrightarrow{OG} \)
3)Cho tam giác ABC và một điểm M thỏa mãn hệ thức \(\overrightarrow{BM}=2\overrightarrow{MC} \). Gọi BN là trung tuyến của tam giác ABC và I là trung điểm BN.
Chứng Minh a)\(2\overrightarrow{MB}+\overrightarrow{MA}+\overrightarrow{MC}=4\overrightarrow{MI} \)
b) \(\overrightarrow{AI}+\overrightarrow{BM}+\overrightarrow{CN}=\overrightarrow{CI}+\overrightarrow{BN}+\overrightarrow{AM} \)
4)Cho tam giác ABC, , lấy các điểm M, N, P sao cho \(\overrightarrow{MA}+3\overrightarrow{MB}=6\overrightarrow{NP}-\overrightarrow{NC}=\overrightarrow{PC}+2\overrightarrow{PA}=\overrightarrow{0} \)
a) Biểu diễn \(\overrightarrow{AN} \) qua \(\overrightarrow{AM} \) và \(\overrightarrow{AP} \)
b)Chứng minh M,N,P thẳng hàng
Cho tam giác đều MNP cạnh 3a.Tính độ dài vecto \(\left|\overrightarrow{MN}-\overrightarrow{PM}\right|\) nha!
cho các vecto \(\overrightarrow{a};\overrightarrow{b}\)có độ dài bằng 1 và 2 góc giữa 2 vecto bằng 120 độ. Ta lập vecto \(\overrightarrow{c}=3\overrightarrow{a}+4\overrightarrow{b}\). Tính độ dài của vecto \(\overrightarrow{c}\)
Câu 1: Trong hệ trục (O,\(\overrightarrow{i}\),\(\overrightarrow{j}\)), tọa độ \(\overrightarrow{i}\)-\(\overrightarrow{j}\)là
Câu 2:Cho \(\overrightarrow{a}\)(3;-4), \(\overrightarrow{b}\)(-1;2). Tọa độ vecto \(\overrightarrow{a}\)+2\(\overrightarrow{b}\)là