Cho hàm số \(y=f\left(x\right)=x^2+6x+5\). Gọi \(m,M\) lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của hàm số \(y=f\left(f\left(x\right)\right)\) với \(x\in\left[-3;0\right]\). Tính tổng \(S=m+M.\)
Tìm giá trị của x,y sao cho biểu thức \(P=\frac{2}{3}-\frac{21}{\left(x+3y\right)^2+5\left|x+5\right|+14}.\) đạt giá trị nhỏ nhất
Cho \(\left\{{}\begin{matrix}x>-1\\y< 2\\z>-\dfrac{1}{2}\end{matrix}\right.\). Tìm giá trị lớn nhất của biểu thức:
\(F=\left(1+x\right)\left(2-y\right)\left(1+2z\right)\).
Tìm giá trị lớn nhất và nhỏ nhất của hàm số \(y=\left(x^2-1\right)\left(x+3\right)\left(x+5\right)\)trên đoạn [0;1]
Tìm các giá trị x, y thuộc Z nguyên dương và \(1007x+y=2015\) sao cho biểu thức \(Q=17-\left|x+y\right|-\dfrac{9}{\left|x+y\right|}\) đạt giá trị lớn nhất.
Cho x,y,z là các số thực dương thỏa mãn x+y=z-1. Tìm giá trị lớn nhất của biểu thức: \(P=\frac{x^3y^3}{\left(x+1\right)^3\left(y+1\right)^3\left(x+y\right)^2}\)
Cho hàm số \(f\left(x\right)=\left|x^2-2x+m\right|\) với \(m\in\left[-2018;2018\right]\). Gọi \(M\) là giá trị nhỏ nhất của hàm số \(f\left(x+\dfrac{1}{x}\right)\) trên tập \(R\backslash\left\{0\right\}\). Số giá trị \(m\) nguyên để \(M\ge2\) là bao nhiêu?
Gi á trị nhỏ nhất của biểu thức F( x;y ) = y - x thuộc miền nghiệm của hệ bất phương trình
\(\left\{{}\begin{matrix}y-2x\le2\\2y-x\ge4\\x+y\le5\end{matrix}\right.\) là
Tìm giá trị nhỏ nhất của biểu thức : \(f\left(x,y\right)=\sqrt{\left(x-3\right)^2+\left(y-4\right)^2}+|x|+|y|\)
(Sử dụng kiến thức hình học để chứng minh)
Cho các số x, y, z thỏa mãn x+ y+ xyz= z. Giá trị lớn nhất của biểu thức P=\(\dfrac{2x}{\sqrt{\left(x^2+1\right)^3}}+\dfrac{x^2\left(1+\sqrt{yz}\right)^2}{\left(y+z\right)\left(x^2+1\right)}\)