Đề này chưa logic rồi bạn ơi.
1 + 2x + 3x^2 +.... + (n +1) x^n chứ ạ???
Nếu đề là: \(\left(1+2x+3x^2+...+\left(n+1\right)x^n\right)^{10}=a_0+a_1x+...+a_{20}x^{20}\)
VT có bậc cao nhất là 10n
VP có bậc cao nhất là 20
=> Đồng nhất hệ số bậc cao nhất => 10n = 20 => n = 2
=> Ta có: \(\left(1+2x+3x^2\right)^{10}=M.C_{10}^k\left(2x+3x^2\right)^k=M.C_{10}^k.N.C_k^i.\left(2x\right)^{k-i}.\left(3x^2\right)^i\)
\(=M.N.C^k_{10}.C^i_k.2^{k-i}.3^i.x^{k+i}\)
Với M là tổng xích ma từ k = 1 đến 10 và N là tổng xích ma từ i = 1 đến k chỉ là áp dụng nhị thứ Newton thôi nhé.
=> Để có a4 => Cần tìm hệ số của x4 => k + i = 4 với \(i\le k\)
Chọn i = 0 => k = 4 => \(C^4_{10}.C^0_4.2^{4-0}.3^0.x^4=3360x^4\)
Chọn i = 1 => k = 3 => \(C^3_{10}.C^1_4.2^{3-1}.3^1.x^{3+1}=5760x^4\)
Chọn i = 2 => k = 2 => \(C^2_{10}.C^2_4.2^{2-2}.3^2.x^4=2430x^4\)
=> \(a_4=3360+5760+2430\)