Cho khối hộp ABCD.A'B'C'D' có đáy là hình chữ nhật, AB= 3 , AD= 7 . Hai mặt bên (ABB'A'),(ADD'A') tạo với đáy các góc lần lượt là 45 ° và 60 ° . Tính thể tích V của khối hộp đã cho biết độ dài cạnh bên bằng 1.
A. V = 3
B. V = 7 3
C. V = 3
D. V = 7
Cho khối hộp ABCD.A′B′C′D′ có tất cả các cạnh bằng 2a, có đáy là hình vuông và cạnh bên tạo với mặt phẳng đáy khối hộp một góc bằng 60 ° . Thể tích khối hộp bằng
A. 8 a 3
B. 2 3 a 3
C. 8 3 a 3
D. 4 3 a 3
Xét hình hộp ABCD.A’B’C’D’ có độ dài tất cả các cạnh bằng a, cạnh bên tạo với mặt phẳng đáy một hình hộp một góc 60 độ Khối hộp tạo bởi hình hộp đã cho có thể tích lớn nhất bằng
A. a 3 2
B. a 3 3 4
C. a 3 3
D. a 3 3 2
Khối hộp có diện tích đáy bằng S, độ dài cạnh bên bằng d và cạnh bên tạo với mặt đáy góc 60 ° có thể tích bằng
A. S d 3 9
B. S d 2
C. S d 3 2
D. S d 3 3
Cho hình hộp đứng A B C D . A ' B ' C ' D ' có đáy ABCD là hình thoi có hai đường chéo A C = a B D = a 3 và cạnh bên A A ' = a 2 . Thể tích V của khối hộp đã cho là
A. V = 6 a 3
B. V = 6 6 a 3
C. V = 6 2 a 3
D. V = 6 4 a 3
Cho một hình hộp với 6 mặt đều là các hình thoi cạnh a, góc nhọn bằng 60 độ. Khi đó thể tích khối hộp là:
A. V = a 3 3 2
B. V = a 3 2 2
C. V = a 3 3 3
D. V = a 3 2 3
Cho hình hộp đứng A B C D . A ' B ' C ' D ' có đáy là hình vuông cạnh a, AC’ tạo với mặt bên B C C ' B ' một góc 30 ° . Tính thể tích của khối hộp A B C D . A ' B ' C ' D ' bằng
A. 2 a 3
B. 2 a 3
C. 2 2 a 3
D. 2 2 a 3
Cho hình hộp chữ nhật ABCD.A' B' C' D' có tổng diện tích của tất cả các mặt là 36, độ dài đường chéo AC' bằng 6. Hỏi thể tích của khối hộp lớn nhất là bao nhiêu?
A. 8
B. 8 2
C. 16 2
D. 24 3
Cho hình hộp A B C D . A ' B ' C ' D ' có A ' B vuông góc với mặt phẳng đáy (ABCD); góc của A A ' với (ABCD) bằng 45 ° . Khoảng cách từ A đến các đường thẳng B B ' và D D ' bằng 1. Góc của mặt phẳng B C C ' B ' và mặt phẳng C C ' D D ' bằng 60 ° . Thể tích khối hộp đã cho là:
A. 2 3
B. 2
C. 3
D. 3 3