Xét hình hộp ABCD.A’B’C’D’ có độ dài tất cả các cạnh bằng a, cạnh bên tạo với mặt phẳng đáy một hình hộp một góc 60 độ Khối hộp tạo bởi hình hộp đã cho có thể tích lớn nhất bằng
A. a 3 2
B. a 3 3 4
C. a 3 3
D. a 3 3 2
Cho hình hộp A B C D . A ' B ' C ' D ' có tất cả các cạnh đều bằng 2a, đáy ABCD là hình vuông. Hình chiếu của đỉnh A ' trên mặt phẳng đáy trùng với tâm của đáy. Tính theo a thể tích V của khối hộp đã cho.
A. V = 4 a 3 2 3
B. V = 4 a 3 2
C. V = 8 a 3
D. V = 8 a 3 3
Cho khối hộp ABCD.A'B'C'D' có đáy là hình chữ nhật, AB= 3 , AD= 7 . Hai mặt bên (ABB'A'),(ADD'A') tạo với đáy các góc lần lượt là 45 ° và 60 ° . Tính thể tích V của khối hộp đã cho biết độ dài cạnh bên bằng 1.
A. V = 3
B. V = 7 3
C. V = 3
D. V = 7
Cho hình hộp đứng A B C D . A ' B ' C ' D ' có đáy là hình vuông cạnh a, AC’ tạo với mặt bên B C C ' B ' một góc 30 ° . Tính thể tích của khối hộp A B C D . A ' B ' C ' D ' bằng
A. 2 a 3
B. 2 a 3
C. 2 2 a 3
D. 2 2 a 3
Khối hộp có diện tích đáy bằng S, độ dài cạnh bên bằng d và cạnh bên tạo với mặt đáy góc 60 ° có thể tích bằng
A. S d 3 9
B. S d 2
C. S d 3 2
D. S d 3 3
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, tất cả các cạnh bên tạo với mặt phẳng đáy một góc 60 ° . Thể tích của khối chóp S.ABCDlà:
A. a 3 6 3
B. a 3 3 2
C. a 3 3
D. a 3 3 6
Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, cạnh bên SB vuông góc với mặt đáy và mặt phẳng (SAD) tạo với mặt đáy một góc bằng 60 ° . Tính thể tích V của khối chóp S.ABCD
A. V = 3 a 3 3 8
B. V = 4 a 3 3 3
C. V = 3 a 3 3 4
D. V = 8 a 3 3 3
Cho hình hộp đứng ABCD.A¢B¢C¢D¢ có AB = a, AD = 2 a , BD = a 3 . Góc tạo bởi AB¢ và mặt phẳng (ABCD) bằng 60 o . Tính thể tích của khối chóp D¢.ABCD.
A. 3 3 a 3 .
B. 3 a 2 .
C. a 3 .
D. 2 3 3 a 3 .
Cho khối hộp ABCD.A′B′C′D′ có tất cả các cạnh bằng 1. Các góc tại đỉnh A bằng 60 ° . Khoảng cách giữa hai đường thẳng BD và AC′ bằng
A. 6 6
B. 2 6
C. 3 6
D. 3 12