\(S_{A'B'C'}=S_1=\dfrac{a^2\sqrt{3}}{4}\) ; \(S_2=S_{ABC}=\dfrac{\left(4a\right)^2.\sqrt{3}}{4}=4a^2\sqrt{3}\)
Em có thể áp dụng công thức tính nhanh:
\(V=\dfrac{h\left(S_1+S_2+\sqrt{S_1S_2}\right)}{3}=\dfrac{21a^3\sqrt{3}}{4}\)
\(S_{A'B'C'}=S_1=\dfrac{a^2\sqrt{3}}{4}\) ; \(S_2=S_{ABC}=\dfrac{\left(4a\right)^2.\sqrt{3}}{4}=4a^2\sqrt{3}\)
Em có thể áp dụng công thức tính nhanh:
\(V=\dfrac{h\left(S_1+S_2+\sqrt{S_1S_2}\right)}{3}=\dfrac{21a^3\sqrt{3}}{4}\)
Tính thể tích của một khối lăng trụ tam giác đều ABC.A'B'C' có AC' bằng 5a, đáy là tam giác đều cạnh bằng 4a
A. 12 a 3
B. 20 a 3
C. 20 a 3 3
D. 12 a 3 3
Cho khối chóp S.ABC có SA vuông góc với (ABC), tam giác ABC vuông tại A, AB=4a, AC=SA=3a. Tính thể tích của khối chóp S.ABC.
A. 6 a 3
B. 8 a 3
C. 2 a 3
D. 9 a 3
Cho lăng trụ tam giác ABC.A'B'C' có thể tích là V. Tính thể tích khối chóp A.BCC'B' theo V.
Cho lăng trụ đứng ABC.A'B'C', có đáy ABC là tam giác vuông tại A, AB = 3a; AC = 4a, cạnh bên AA' = 2a. Tính thể tích của khối lăng trụ .
A. 12 a 3
B. 4 a 3
C. 3 a 3
C. 6 a 3
Cho hình lăng trụ đều ABC.A'B'C' có góc giữa đường thẳng A'B với mặt phẳng (ABC) bằng 60 0 và khoảng cách từ điểm A đến mặt phẳng (A'BC) bằng a 5 2 . Tính theo a thể tích V của khối lăng trụ ABC.A'B'C'.
A . V = 125 3 96 a 3
B . V = 125 3 288 a 3
C . V = 125 3 384 a 3
D . V = 125 3 48 a 3
Cho lăng trụ đứng ABC.A'B'C' có đáy là tam giác đều cạnh a. Đường thẳng AB' hợp với đáy một góc 60 0 . Tính thể tích V của khối lăng trụ ABC.A'B'C'.
A. V = 3 a 3 2
B. V = a 3 4
C. V = 3 a 3 4
D. V = a 3 2
Khối chóp tam giác đều có thể tích V = 2 a 3 , cạnh đáy bằng 2 a 3 thì chiều cao khối chóp bằng:
A. a 6
B. a 6 3
C. 2 a 3 3
D. a 3
Cho hình lăng trụ ABC.A'B'C' có đáy là tam giác đều cạnh 3a. Hình chiếu vuông góc của C’ lên mặt phẳng (ABC) là điểm D thỏa mãn D C ⇀ = - 2 D B ⇀ . Góc giữa đường thẳng AC’ và mặt phẳng (A'B'C') bằng 45 0 . Tính theo a thể tích khối lăng trụ ABC.A'B'C'.
A . 9 a 3 21 4
B . 3 a 3 21 4
C . 27 a 3 21 4
D . a 3 21 4
Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông cân đỉnh C, A'C = a. Gọi x là góc giữa hai mặt phẳng (A'CB) và (ABC) để thể tích khối chóp A'.ABC lớn nhất. Tính thể tích lớn nhất của khối chóp A'.ABC theo a
A. a 3 3 3
B. a 3 3 9
C. a 3 3 27
D. a 3 3 81
Cho lăng trụ tam giác đều ABC.A'B'C' có cạnh đáy bằng a, góc giữa đường thẳng AC' và mặt phẳng đáy bằng 60 0 . Tính thể tích khối lăng trụ ABC.A'B'C' theo a.
A . 3 a 3 4
B . a 3 12
C . 3 a 3 4
D . a 3 4