Cho hình chóp tam giác đều S.ABC. Cho hình chóp tam giác đều S và có đường tròn đường tròn đáy là đường tròn nội tiếp tam giác ABC gọi là hình nón nội tiếp hình chóp S.ABC, hình nón có đỉnh S và có đường tròn đáy là đường tròn ngoại tiếp tam giác ABC gọi là hình nón ngoại tiếp hình chóp S.ABC. Tỉ số thể tích của hình nón nội tiếp và hình nón ngoại tiếp hình chóp đã cho là
A. 1 2
B. 1 4
C. 1 3
D. 2 3
Cho (O ; R), đường kính AB. Trên đường tròn lấy điểm C sao cho BC bằng R. Từ B vẽ tiếp tuyến với đường tròn, tiếp tuyến này cắt đường thẳng AC tại D
a, Cm tam giác ACB vuông tại C?
b, Tính AC , BD theo R.
c, Vẽ đường tròn ngoại tiếp tam giác CBD, gọi O' là tâm đường tròn này. Cm O'C là tiếp tuyến của (O) và AB là tiếp tuyến của (O').
d, Gọi I là tâm đường tròn nội tiếp tam giác ABD. Tính OI theo R.
Cho lăng trụ xiên tam giác ABC A'B'C' có đáy ABC là tam giác đều cạnh a. Hình chiếu của A' xuống (ABC) là tâm O đường tròn ngoại tiếp tam giác ABC biết AA' hợp với đáy ABC một góc 60 ° . Tính thể tích lăng trụ
A. 3 a 3 3 4
B. a 3 3 4
C. a 3 12
D. a 3 2
mọi người giúp mình câu c và d với [TOÁN LỚP 9]
cho tam giác ABC nhọn (AB>AC) nội tiếp đường tròn (O;R) có 3 đường cao AD, BE, CF cắt nhau tại H. gọi I là tâm đường tròn ngoại tiếp tam giác AEF
a) chứng minh HE.HB = 2HI.HD
b) chứng minh: tứ giác DFIR nội tiếp và xác định tâm K của đường tròn ngoại tiếp
c) BE cắt DF tại M; CD cắt DE tại N. chứng mình MN vuông góc AK
d) cho AB = \(R\sqrt{3}\); AC=\(R\sqrt{2}\) tính độ dài EF theo R
Cho tam giác ABC vuông tại A, với AC<AB;AH là đường cao kẻ từ A.Các tiếp tuyến tại A và B với đ/tròn tâm O ngoại tiếp tam giác ABC cắt nhau tại M.Đoạn MO cắt AB tại E.Đoạn MC cắt đường cao AH tại F.Kéo dài CA cắt BM ở D.Đường thẳng BF cắt đường thẳng AM tại N.
a)C/M: OM//CD và M là trung điểm của BD
b)C/M: EF//BC
c)C/M: HA là tia p/g của góc MHN
d)Cho OM=BC=4cm.Tính chu vi tam giác ABC
Cho mặt phẳng Oxy cho tam giác ABC có A(-1; 2), B(-2; -4), C(1; 2)
1) Viết phương trình tổng quát đường thẳng AC, phương trình tham số đường trung tuyến CM.
2) Tìm tọa độ trọng tâm G, trực tâm H, tâm đường tròn ngoại tiếp I của tam giác ABC.
3) Tính chu vi, diện tích tam giác ABC.
4) Tính số đo góc tạo bởi 2 đường thẳng AB và AC.
5) Viết phương trình đường tròn ngoại tiếp tam giác ABC. Lập phương trình tiếp tuyến của đường tròn tại điểm A.
6) Lập phương trình đường tròn tâm C và tiếp xúc với đường thẳng AB.
Cho tam giác ABC với các cạnh AB = c , AC = b, BC = a . Gọi R , r , S lần lượt là bán kính đường tròn ngoại tiếp, nội tiếp và diện tích của tam giác ABC . Trong các phát biểu sau, phát biểu nào sai?
A. S = a b c 4 R
B. R = a sin A
C. D = 1 2 a b sin C
D. a 2 + b 2 - c 2 = 2 a cos C
1. Từ A ngoài đường tròn tâm O. Kẻ 2 tia tiếp tuyến AM , AN. Biết góc MAN = a độ ( không đổi ). Từ I bất kì trên cung nhỏ MN, vẽ tiếp tuyến cắt AM , AN tại B và C. OB và OC cắt đường tròn O tại D và E. CM : Cung DE không đổi khi I chạy trên cung MN
2. Cho đường tròn O và O' cắt nhau tại A và B. Qua A kẻ đường thẳng vuông góc với AB cắt đường tròn O tại C, cắt đường tròn O' tại D. Tia CB cắt đường tròn O' tại F , tia DB cắt đường tròn O tại E. CM : AB là tia phân giác góc EAF
3. Cho tam giác ABC nhọn. Điểm I bất kì trong tam giác. Kẻ IH vuông góc AB , IK vuông góc AC , IL vuông góc AB. Tìm vị trí điểm I sao cho : AL^2 + BH^2 + CK^2 đạt gtnn
Cho tứ diện đều SABC cạnh a. Tỉ số thể tích của hai hình nón cùng đỉnh S, đáy lần lượt là hai đường tròn nội tiếp và ngoại tiếp tam giác ABC là:
A. 1 2
B. 1 4
C. 1 3
D. Tỉ số khác