Xét \(\Delta\)ADM và \(\Delta\)BAP có: ^DAM = ^ABP (=900); AD = AB; ^ADM = ^BAP (Cùng phụ ^DAP)
=> \(\Delta\)ADM = \(\Delta\)BAP (g.c.g) => AM=BP (2 cạnh tương ứng) => BP=AN (Do AM=AN)
Xét tứ giác ABPN có: AN // BP; BP = AN; ^BAN = 900 => Tứ giác ABPN là hcn
=> PN vuông góc AN hay PN vuông góc DN => ^PND = 900
Xét tứ giác DNHP: ^PND = ^PHD (=900) => Tứ giác DNHP nội tiếp đg tròn đường kính DP (1)
Xét tứ giác DHPC: ^DHP = ^DCP (=900) => Tứ giác DHPC nội tiếp đg tròn đường kính DP (2)
Từ (1) và (2) => 5 điểm C;D;N;H;P cùng thuộc 1 đường tròn (đpcm).
AH vuông góc DM
=>góc MAH=góc MDA
Xét ΔABP vuông tại B và ΔDAM vuông tại A có
AB=AD
góc MAH=góc MDA
=>ΔABP=ΔDAM
=>BP=AM=AN
mà BC=AD
nên PC=ND
=>PCND là hình chữ nhật
=>P,C,D,N cùng nằm trên đường tròn đường kính DP
mà H nằm trên đường tròn đường kính DP(góc DHP=90 độ)
nên C,D,N,H,P cùng thuộc 1 đường tròn