bạn có cách giải bài này chưa ạ , nếu có r thỉ mik với đc k ạ
bạn có cách giải bài này chưa ạ , nếu có r thỉ mik với đc k ạ
Cho hình vuông ABCD . E là điểm di chuyển trên cạnh BC . Đường thẳng AE cắt đường thẳng DC tại F . Qua A vẽ đường thẳng vuông góc với AE cắt đường thằng CD tại KC
a, Chứng minh tam giác KAE cân
b, Chứng minh \(\frac{1}{AE^2}+\frac{1}{\text{AF}^2}\) có giá trị không đổi
Cho hình thoi ABCD có góc A = 120 độ. Tia Ax tạo với tia AB góc BAx =15 độ và cắt cạnh BC tại E, cắt đường thẳng CD tại F.
Chứng minh: \(\frac{1}{AE^2}+\frac{1}{ÀF^2}=\frac{4}{3AB^2}\)
cho hình vuông ABCD. Trên tia BC, lấy M nằm ngoài đoạn thẳng BC và trên tia CD lấy N so cho DN=BM. Đường vuông góc với MA tại M và đường vuông góc với NA tại N cắt nhau tại F. CMR: CF vuông góc CA
Cho đường tròn (O;R) đường kính BC . trên tia đối của tia BC lấy điểm A. Qua A vẽ đường d vuông góc với BC . kẻ tiếp tuyến AM với đường tròn (O;R) ( M là tiếp điểm ) đường thẳng CM cắt đường thẳng d tại E . đường thẳng BE cắt đường tròn (O;R) tại N . CMR :
a) tứ giác ABME là tứ giác nội tiếp
b) AN là tiếp tuyến của (O;R)
c) AE; BM ; CN đồng quy
mấy pn ơi giúp mik với
mik làm đc câu a và b rồi còn câu c thôi
làm giúp mik câu c với
Cho hình chữ nhật ABCD, AB=60cm, AD=32cm. Từ D vẽ đường thẳng vuông góc với đường chéo AC. Đường thẳng này cắt AC tại E và AB tại F. Tính độ dài các đoạn thẳng EA, EC,ED,FB,FD.
Cảm ơn các bạn trước
Cho đường tròn (O) có đường kính AB cố định, M là 1 điểm thuộc đường tròn (M khác A,B). Các tiếp tuyến của (O) tai A và M cắt nhau tại C. Đường tròn (I) qua M và tiếp xúc với đường thẳng AC tại C, CD là đường kính của (I). Chứng minh
a, O,M,D thẳng hàng
b, Tam giác COD cân
c, Đường thẳng qua D và vuông góc với BC luôn đi qua 1 điểm cố định khi M di động trên (O)
Cho hình vuông ABCD có cạnh bằng 3a. lấy AE = a trên cạnh AD và DF = a trên cạnh DC. Nối AF và BE cắt nhau tại H. Chứng minh AF vuông góc với BE
b ) Tính các cạnh của tứ giác ABFE và những đường chéo của nó theo a
c ) Tính HE và HB theo a
d ) chứng minh tứ giác EDFH nội tiếp.cho biết đường tròn ngoại tiếp tứ giác DEFH cắt EF ở K. Tính DK theo a
e ) Chứng minh E, K,C thẳng hàng
BT1: Cho tam giác ABC ( AB< AC) nội tiếp đường tròn tâm O . Ba đường cao AH, BE, CF cắt nhau tại I. Kẻ đường kính AD của đường tròn O, gọi M là trung điểm BC.
a/ Chứng minh: 4 điểm B, F, E, C cùng nằm trên một đường tròn
b/ Chứng minh : EF < BC
c/ Tứ giác BICD là hình gì ? Vì sao ?
d/ Chứng minh : OM = AI / 2
BT2: Cho đường tròn tâm O, điểm A nằm ngoài đường tròn. Từ A vẽ hai đường thẳng cắt đường tròn, đường thứ nhất cắt đường tròn tại M và N ( M nằm giữa A và N ), đường thứ 2 cắt đường tròn tại E và F ( E nằm giữa A và F ) sao cho MN = EF. Kẻ OH vuông góc MN, OK vuông góc EF.
a/ So sánh AH và AK
b/ Chứng minh : AM = AE
c/ Tứ giác MEFN là hình gì ? Vì sao ?
cho hình vuông ABCD có cạnh là a và 1 điểm N trên AB cho biết tia CN cắt AD tại E, Cx vuông góc với CE cắt AB tại F. M là trung điểm EF và CE=CF.
a, khi điểm N di chuyển trên AB thì trung điểm M của EF chạy trên đường thẳng cố định. (làm bằng 2 cách)
b, đặt BN=x (x>0). tính diện tích tứ giác ACFE theo a và x.
c, xác định vị trí của N trên AB sao cho tứ giác ACEF có diên tích gấp 3 lần diện tích tứ giác ABCD.