1: \(=\left|\overrightarrow{CO}-\overrightarrow{CB}\right|=BO=\dfrac{a\sqrt{2}}{2}\)
1: \(=\left|\overrightarrow{CO}-\overrightarrow{CB}\right|=BO=\dfrac{a\sqrt{2}}{2}\)
Cho hình chữ nhật ABCD tâm O, AD =4, AD =5
a) Tính độ lớn \(\overrightarrow{BD}\)
b) Gọi M là trung điểm của CD. Chứng minh \(2\overrightarrow{OM}+\overrightarrow{OB}=\dfrac{1}{2}\overrightarrow{AC}\)
Cho hình thoi ABCD cạnh a, \(\widehat{BCD}\)= 60o . O là giao điểm của AC và BD . Tính \(\left|\overrightarrow{AB}+\overrightarrow{AD}\right|,\left|\overrightarrow{CB}+\overrightarrow{DC}\right|\)
Cho tứ giác ABCD nội tiếp đường tròn tâm O sao cho \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=\overrightarrow{0}\)
Chứng minh: ABCD là hình chữ nhật
P/s: chỉ dùng kiến thức trg bài 1 và 2 của sgk toán lớp 10 ("các định nghĩa" và "tổng và hiệu của hai véctơ")
cho hbh abcd tâm O. Chứng minh rằng:
\(\overrightarrow{OA}\) + \(\overrightarrow{OB}\)+ \(\overrightarrow{OC}\) + \(\overrightarrow{OD}\)= \(\overrightarrow{0}\)
Cho hình chữ nhật ABCD có AB = a, AD = a\(\sqrt{2}\)
a. Tính độ dài của vector \(\overrightarrow{DC}\) +\(\overrightarrow{BD}\) +\(\overrightarrow{AB}\)
b. Xác định điểm M sao cho \(\overrightarrow{DC}\) +\(\overrightarrow{BD}\) +\(\overrightarrow{AB}\) = \(\overrightarrow{BM}\)
a) Cho tứ giác ABCD không phải là hình bình hành, AC cắt BD tại O có OB = OD. Gọi M, N lần lượt là trung điểm của AB và CD, MN cắt AC tại I. Chứng minh rằng \(\overrightarrow{MI}=\overrightarrow{IN}\)
b) Cho tứ giác ABCD có 2 đường chéo cắt nhau tại I. Biết \(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}=\overrightarrow{0}\). Chứng minh rằng tứ giác ABCD là hình bình hành
Bài 3. (1 điểm) Cho hình vuông $ABCD$ cạnh $a$ có tâm $O$ là giao điểm của hai đường chéo.
a) Tính độ dài của $\overrightarrow{OA}-\overrightarrow{CB}$ .
b) Chứng minh rằng $\overrightarrow{DA}-\overrightarrow{DB}+\overrightarrow{DC}=\overrightarrow{0}$.
Cho hình vuông ABCD có canh =a, O là giao điểm AC và BD
a, Tính \(\left|\overrightarrow{OA}-\overrightarrow{CB}\right|\)
b, ____ \(\left|\overrightarrow{CA}+\overrightarrow{CB}\right|\)
c, ____ \(\left|\overrightarrow{CD}-\overrightarrow{DA}\right|\)
d, ____ \(\left|\overrightarrow{AB}+\overrightarrow{DC}\right|\)
Cho hình thang ABCD có AB // CD, CD = 3AB. Gọi E, F là các điểm trên cạnh DC sao cho DE = EF = FC, O là giao điểm của À và BE, K là điểm thuộc cạnh bên BC sao cho \(\overrightarrow{BK}=x\overrightarrow{BC}\).
1) Chứng minh đẳng thức sau : \(\overrightarrow{AC}+\overrightarrow{BD}=\overrightarrow{AD}+\overrightarrow{BC}\)
2) Tìm x để 3 điểm D, O, K thẳng hàng.