Cho hình vuông ABCD có canh =a, O là giao điểm AC và BD
a, Tính \(\left|\overrightarrow{OA}-\overrightarrow{CB}\right|\)
b, ____ \(\left|\overrightarrow{CA}+\overrightarrow{CB}\right|\)
c, ____ \(\left|\overrightarrow{CD}-\overrightarrow{DA}\right|\)
d, ____ \(\left|\overrightarrow{AB}+\overrightarrow{DC}\right|\)
: Cho hình chữ nhật ABCD có AB = 4 avà AD 3a . Gọi M là trung điểm của cạnh DC . Tính
\(\left|\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{AM}\right|\)
Cho hình vuông ABCD cạnh a tâm O là giao điểm của 2 đường chéo
1) Tính độ dài \(\overrightarrow{OA}-\overrightarrow{CB}\)
2) Chứng minh \(\overrightarrow{DA}-\overrightarrow{DB}+\overrightarrow{DC}=0\)
Cho hình chữ nhật ABCD có AB = a, AD = a\(\sqrt{2}\)
a. Tính độ dài của vector \(\overrightarrow{DC}\) +\(\overrightarrow{BD}\) +\(\overrightarrow{AB}\)
b. Xác định điểm M sao cho \(\overrightarrow{DC}\) +\(\overrightarrow{BD}\) +\(\overrightarrow{AB}\) = \(\overrightarrow{BM}\)
Cho hình thang ABCD có AB // CD, CD = 3AB. Gọi E, F là các điểm trên cạnh DC sao cho DE = EF = FC, O là giao điểm của À và BE, K là điểm thuộc cạnh bên BC sao cho \(\overrightarrow{BK}=x\overrightarrow{BC}\).
1) Chứng minh đẳng thức sau : \(\overrightarrow{AC}+\overrightarrow{BD}=\overrightarrow{AD}+\overrightarrow{BC}\)
2) Tìm x để 3 điểm D, O, K thẳng hàng.
Nếu M, Ntheo thứ tự là trung điểm của các đoạn AD, BC thì:
\(\overrightarrow{MN=}\frac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{DC}\right)=\frac{1}{2}\left(\overrightarrow{AC}+\overrightarrow{DB}\right)\)
Cho hình thang vuông ABCD, đường cao AB=2a, đáy lớn BC=3a, đáy nhỏ AD=2a
a) Tính \(\overrightarrow{AB}.\overrightarrow{CD},\overrightarrow{BD}.\overrightarrow{DC},\overrightarrow{AC}.\overrightarrow{BD}\)
b) Gọi I là trung điểm CD. Tính \(\overrightarrow{AI}.\overrightarrow{BD}\). Suy ra góc giữa AI và BD
Cho hình vuông ABCD có cạnh a = 4. Chọn hệ trục tọa độ \left(A;\overrightarrow{i};\overrightarrow{j}\right), trong đó \overrightarrow{i} và \overrightarrow{AD} cùng hướng, \overrightarrow{j} và \overrightarrow{AB} cùng hướng. Tìm tọa độ các đỉnh của hình vuông, giao điểm I của hai đường chéo, trung điểm N của BC và M của CD.
Trả lời:
A(0;
), B(
;4), C(4;
), D(4;
).
I(
;
), N(
;4), M(4;
)
Cho tam giác ABC có G là trọng tâm.Và B' là điểm điểm đối xứng của B qua G.M là trung điểm của BC.Chứng mình rằng
a) \(\overrightarrow{AB'}=\frac{2}{3}\overrightarrow{AC}-\frac{1}{3}\overrightarrow{AB}\)
b)\(\overrightarrow{CB'}=\frac{-1}{3}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)
c)\(\overrightarrow{MB}=\frac{1}{6}\overrightarrow{AC}-\frac{5}{6}\overrightarrow{AB}\)