Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A, D, AD=AB=2a, CD=a góc giữa (SBC) với đáy bằng 60 ° , I là trung điểm của AD, (SBI), (SCI) vuông góc với đáy. Thể tích S.ABCD bằng
A. a 3 13 3
B. 3 a 3 15 5
C. 2 a 3 3 5
D. a 3 5 3
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A , D , AD = DC = a , AB = 2a (a > 0) Hình chiếu của S lên mặt đáy trùng với trung điểm I của AD. Thể tích khối chóp S.IBC biết góc giữa SC và mặt đáy bằng 60 °
A. m = - 3
B. m = - 1 2
C. m = 1 2
D. m = 1
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, AB = AD = 2a, CD = a. Gọi I là trung điểm của cạnh AD, biết hai mặt phẳng (SBI); (SCI) cùng vuông góc với đáy và thể tích khối chóp S. ABCD bằng 3 15 a 3 5 . Tính góc giữa hai mặt phẳng (SBC); (ABCD).
A. 600
B. 300
C. 360
D. 450
Cho hình chóp S.ABCD đáy ABCD là hình thang vuông tại A và B, I là trung điểm của AB, có (SIC) và (SID) cùng vuông góc với đáy. Biết A D = A B = 2 a , B C = a , khoảng cách từ I đến (SCD) là 3 a 2 4 . Khi đó thể tích khối chóp S.ABCD là:
A. a 3 .
B. a 3 3 .
C. 3 a 3 .
D. a 3 3 2 .
Cho hình chóp S.ABCD có SA vuông góc với đáy, ABCD là hình thang vuông tại A và D, AB=2a, AD=CD=a, SA=2a. Gọi I là trung điểm của AB. Thể tích của khối cầu ngoại tiếp tứ diện S.AICD là
A. π a 3 6
B. π a 3 3
C. π a 3 5
D. Đ á p á n k h á c
Hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D; biết A B = A D = 2 a , C D = a . Gọi I là trung điểm của AD , biết hai mặt phẳng S B I v à S C I cùng vuông góc với mặt phẳng (ABCD) Thể tích khối chóp S.ABCD bằng 3 15 a 3 5 . Góc giữa hai mặt phẳng S B C v à A B C D bằng
A. 90 ∘
B. 60 ∘
C. 30 ∘
D. 45 ∘
Cho hình chóp S.ABCD có đáy là hình thang vuông tại C và D, AD = 3a, BC = CD = 4a; cạnh bên SA vuông góc với đáy và S A = a 3 . Gọi M là điểm nằm trên cạnh AD sao cho AM = a và N là trung điểm của CD. Gọi α là số đo của góc giữa hai đường thẳng SM và BN. Khi đó cosα bằng
A. 5 5
B. 6 3
C. 2 3
D. 6 6
Cho hình chóp SABCD có đường cao SA=2a, đáy ABCD là hình thang vuông ở A và D, AB=2a, AD=CD=a. Khoảng cách từ điểm A đến mặt phẳng (SBC) bằng
A. 2 a 3
B. 2 a 2
C. 2 a 3
D. a 2
Cho hình chóp S.ABCD đáy ABCD là hình thang vuông tại A và D, AD=BA=2a, CD=a, góc giữa hai mặt phẳng (SBC) và (ABCD) bằng 60 ° . Gọi I là trung điểm của cạnh AD. Biết hai mặt phẳng (SBI) và (SCI) cùng vuông góc với mặt phẳng (ABCD). Thể tích khối chóp S.ABCD tính theo a bằng
A. 3 a 3 15 5
B. 3 a 3 15 15
C. a 3 15 5
D. 3 a 3 5 15