Cho hình chóp S.ABCD có ABCD là hình thang vuông tại A và D, AB=AD=a, CD=2a. Hình chiếu của S lên mặt phẳng (ABCD) trùng với trung điểm của BD Biết thể tích tứ diện SBCD bằng a 3 6 . Tính khoảng cách từ A đến mặt phẳng (SBC) là:
A. a 3 2
B. a 2 6
C. a 3 6
D. a 6 4
Cho hình chóp S.ABC có đáy là tam giác vuông tại A, biết S A ⊥ A B C D và AB = 2a, AC = 3a; SA = 4a. Tính khoảng cách d từ điểm A đến mặt phẳng (SBC)
A. d = 12 a 61 61
B. d = 2 a 11 11
C. d = a 43 2
D. d = 6 a 29 29
Cho hình chóp SABCD có đáy là hình thang vuông tại A, B, AD= a, AB=2a, BC=3a,SA=2a . H là trung điểm cạnh AB,SH là đường cao của hình chóp SABCD Tính khoảng cách từ điểm Ađến mp (SCD)
A. a 30 7
B. a 30 7
C. a 13 10
D. a 13 7
Cho hình chóp S.ABCD có đáy là hình vuông tại A và D, S A ⊥ ( A B C D ) . Góc giữa SB và mặt phẳng đáy bằng 45 o . E là trung điểm của SD, A B = 2 a , A D = D C = a . Tính khoảng cách từ điểm B đến mặt phẳng (ACE)
A . 2 a 3 .
B . 4 a 3 .
C. a
D . 3 a 4 .
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B. Biết A B = B C = a , A D = 2 a , S A = 3 a 2 2 , S A ⊥ A B C D . M, N theo thứ tự là trung điểm của SB, SA. Khoảng cách từ N đến mặt phẳng (MCD) bằng:
A. a 3
B. a 4
C. 4 a 3
D. 3 a 4
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy và SA=2a. Tính khoảng cách từ D đến mặt phẳng (SBC).
A. a 5
B. a 5 2
C. 5 a 4
D. 2 a 5 5
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. SA vuông góc với đáy và S A = 2 a . Tính khoảng cách từ D đến mặt phẳng (SBC).
A. a 5
B. 2 a 5 5
C. 5 a 4
D. a 5 2
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A, B và AD = 2a, AB = BC = SA = a. Cạnh bên SA vuông góc với đáy, với M là trung điểm AD. Tính khoảng cách h từ M đến mặt phẳng (SCD).
A. h = a 3
B. h = a 6 6
C. h = a 6 3
D. h = a 3 6
Cho hình chóp S.ABC có đáy là tam giác vuông đỉnh B, AB = a, SA vuông góc với mặt phẳng đáy và SA = 2a. Khoảng cách từ A đến mặt phẳng (SBC) bằng
A. 5 a 3
B. 2 2 a 3
C. 5 a 5
D. 2 5 a 5