tick rồi mình giải chi tiết cho
bài nk mình pk làm r, các bạn khỏi cần tick j hết
tick rồi mình giải chi tiết cho
bài nk mình pk làm r, các bạn khỏi cần tick j hết
CHO HÌNH THANG ABCD (AB//CD), AC CẮT BD Ở O. (d) LÀ ĐƯỜNG THẲNG ĐI QUA O CẮT AB, CD LẦN LƯỢT TẠI M, N. CHO\(\frac{MA}{MB}=k\). TÍNH ND:NC. (d') LÀ ĐƯỜNG THẲNG QUA O SONG SONG VỚI AB, CẮT AD Ở P, BC Ở Q. CM O LÀ TRUNG ĐIỂM CỦA PQ
Bài 1: Cho hình thang ABCD (AB//CD). AB cắt BD tại O, gọi M là trung điểm của AB, OM cắt CD tại N. Chứng minh rằng AM/CN = OB/OD; NC=ND
Bài 2: Cho hình bình hành ABCD, 1 đường thẳng d đi qua D cắt đường chéo AC ở I, cắt AB và BC lần lượt tại M, N. Chứng minh rằng:
a) IM/ID = ID/IN
b) MB/AB = NB/NC
Cho hthang ABCD( AB//CD); AC cắt BD tại O, AD cắt BC tại K, KO cắt AB, CD tại M, N a) cm MA/ND= MB/NC b)MA/NC=MB/ND
Cho hthang ABCD( AB//CD); AC cắt BD tại O, AD cắt BC tại K, KO cắt AB, CD tại M, N a) cm MA/ND= MB/NC b)MA/NC=MB/ND
cho hình thang ABCD AB//CD AB>CD O là giao điểm 2 đường chéo K là giao điểm AD và BC K, O cắt AB và CD theo thứ tự tại M và N CM:MA/ND=MB/NC, Ma/Nc MC/ ND
Trên phần kéo dài của đường chéo AC của hình thang ABCD (BD // AD) về phái C lấy điểm P tùy ý. Các đường thẳng đi qua P và các trung điểm 2 đáy hình thang cắt các cạnh bên AB, CD tại M, N. Chứng minh rằng:
+,\(\frac{MB}{MA}=\frac{NC}{ND}\)
+, MN // AB // CD
1)cho tam giác abc có trung tuyến am,N là trung điểm am,bn cắt ac tại d.Tính tỉ số dn/db.
2)Cho hình thang abcd (ab//cd).Gọi o là giao điểm 2 đường chéo.Đường thẳng qua o và song song hai đáy cắt 2 cạnh bên tại m và n.Chứng minh om=on và 2/mn = 1/ab + 1/cd
3)Cho hình thanh abcd (ab//cd) .Gọi o là giao điểm hai đường chéo,i là giao điểm 2 cạnh bên.io cắt ab tại m và cd tại n.Chứng minh ma=mb ;nc=nd
CHO HÌNH THANG ABCD (AB//CD VÀ AB<CD). AC CẮT BD Ở O. ĐƯỜNG THẲNG AD VÀ BC CẮT NHAU TẠI I. M, N, P LẦN LƯỢT LÀ TRUNG ĐIỂM CỦA AB, CD VÀ ĐƯỜNG TRUNG BÌNH EF. CM M, N, P, O, I THẲNG HÀNG
Bài 9: Cho hình bình hành ABCD. Hai đường chéo AC,BD cắt nhau tại O. Đường m đi qua O cắt AB,CD lần lượt tại M,P. Đường thẳng n đi qua O và vuông góc với m cắt BC và DA lần lượt tại N,Q.
Cm MNPQ là hình bình hành