a: Xét tứ giác ABMD có
AB//MD
AB=MD
Do đó: ABMD là hình bình hành
mà AB=AD
nên ABMD là hình thoi
a: Xét tứ giác ABMD có
AB//MD
AB=MD
Do đó: ABMD là hình bình hành
mà AB=AD
nên ABMD là hình thoi
Cho hình thang ABCD có góc A = góc B = 90 độ, AB=AD=1/2CD.Gọi M là trung điểm của CD
a)Tứ giác ABCM,ABMD là hình gì? Tại sao?
b) Cho AC cắt BM tại E và AM cắt BD tại O.Gọi N là trung điểm MC. Chứng minh tức giác DOEN là hình thang cân
Cho hình thang ABCD có góc A = góc B = 90 độ, AB=AD=\(\dfrac{1}{2}\)DC. Gọi M là trung điểm DC
a/ Tứ giác ABCM là hình gì?, Tứ giác ABMD là hình gì?
b/ Gọi E là giao điểm của AC và BM, O là giao điểm của AM và BD.Gọi N là trung điểm MC. Chứng minh DOEN là hình thang cân
c/Kẻ DI vuông góc với AC ( I ϵ AC), DI cắt AM ở H. Gọi K là giao điểm BM và DE. Chứng minh DH=DK
Mình cần gấp lắm . Cảm ơn ạ !
Bài 1: Cho tứ giác ABCD có BC = AD và BC không song song với AD, gọi M, N,
P, Q, E, F lần lượt là trung điểm của các đoạn thẳng AB, BC, CD, DA, AC, BD.
a) Chứng minh tứ giác MEPF là hình thoi.
b) Chứng minh các đoạn thẳng MP, NQ, EF cùng cắt nhau tại một điểm.
c) Tìm thêm điều kiện của tứ giác ABCD để N, E, F, Q thẳng hàng
Bài 2: Cho tam giác ABC vuông tại A (AB<AC), M là trung điểm BC, từ M kẻ
đường thẳng song song với AC, AB lần lượt cắt AB tạt E, cắt AC tại F
a) Chứng minh EFCB là hình thang
b) Chứng minh AEMF là hình chữ nhật
c) Gọi O là trung điểm AM. Chứng minh: E và F đối xứng qua O.
d) Gọi D là trung điểm MC. Chứng minh: OMDF là hình thoi
Bài 3: Cho tam giác ABC có AB<AC. Gọi M, N, P lần lượt là trung điểm của AB,
AC, BC. Vẽ đường cao AH của tam giác ABC. Tứ giác HMNP là hình gì.
Bài 4: Cho tứ giác ABCD có góc DAB = góc BCD = 120 0 . Tính số đo của hai góc
còn lại để ABCD là hình bình hành.
Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F sao
cho AE=EF=FC.
a) Tứ giác BEDF là hình gì?
b) Chứng minh CFDAEB .
c) Chứng minh CFBEAD .
Bài 6: Cho tam giác ABC cân tại A, đường cao AD. Gọi E là điểm đối xứng với D qua
trung điểm M của AC.
a) Tứ giác ADCE là hình gì? Vì sao?
b) Tứ giác ABDM là hình gì? Vì sao?
c) Tam giác ABC có thêm điều kiện gì thì ADCE là hình vuông?
d) Tam giác ABC có thêm điều kiện gì thì ABDM là hình thang cân?
Cho tam giác ABC cân tại A , Am là đường cao. Gọi N là trung điểm của AC. d đối xứng của M qua N. Chứng minh:
A) tứ giác ADCM là hình chữ nhật
B) Tứ giác ABMD là hình bình hành và BD đi qua trung điểm O của AM .
C) BD cắt AC tại I. CMR : DI=2/3OB
Cho tam giác ABC nhọn (AB < AC). đường cao AH. Gọi D là trung điểm của AC, K là điểm đối xứng của H qua D.
a) Chứng minh tứ giác AHCK là hình chữ nhật.
b) Gọi I và E lần lượt là trung điểm của BC và AB. Chứng minh tứ giác EDCI là hình bình hành.
c) Chứng minh tứ giác EDIH là hình thang cân.
d) AH cắt DE tại M. BM cắt HE tại N. AN cắt BC tại L. Gọi O là trung điểm của MI, P là điểm đối xứng của L qua N. Chứng minh rằng C, O, N thẳng hàng.
Cho tam giác ABC cân tại A, AM là đường cao. Gọi N là trung điểm của AC. D là điểm đối xứng với M qua N
a) Chứng minh ADCM là hình chữ nhật
b) Chứng minh ABMD là hình bình hành và BD đi qua trung điểm O của AM
c)BD cắt AC tại I. Chứng minh rằng DI= 2/3 OB
1 . Cho tam giác giác ABC cân tại A , trung tuyến AM . Gọi D là điểm đối xứng với A qua M và K là trung điểm của MC , E là điểm đối xứng của D qua K .
a . Chứng minh tứ giác ABCD là hình thoi
b . Tứ giác AMCE là hình gì ?
c . AM cắt BE = { I } . Chứng minh I là trung điểm của BE
d . CMR : AK , CI , EM đồng qui
2 . Cho tam giác ABC cân tại A ( AB = AC ) . Gọi D , E , F theo thứ tự là trung điểm của các cạnh AB , BC , CA . CMR :
a . Tứ giác BDFC là hình thang cân
b . Tứ giác ADEF là hình thoi
c . Tìm điều kiện của tam giác ABC để tứ giác ADEF là hình vuông .
Cho tam giác ABC vuông tại A (AB<AC). Gọ M là trung điểm của BC. Từ M kẻ đường thẳng song song AC và AB lần lượt cắt AB tại E và AC tại F.
a) chứng minh EFCB là hình thang
b) chứng minh AEMF là hình chữ nhật
c) gọi O la trung điểm của AM. chứng minh E và F đối xứng nhau qua O
d) gọi D là trung điểm MC. chứng minh OMDF là hình thoi
Cho hình thang ABCD c ó A B = A D = 1/2 DC . Gọi M là trung điểm của CD và H là giao điểm của AM và BD. a) Chứng minh tứ giác ABMD là hình thoi b) Chứng minh BD ⊥ BC c) Chứng minh ΔAHD và ΔCBD đồng dạng d) Biết AB = 2,5cm; BD = 4cm. Tính độ dài cạnh BC và diện tích hình thang ABCD.