Đáp án B
Ta có: V A B C D . A ' B ' C ' D ' = a 3 .
Lại có: V C . B D C = 1 3 C C ' . S B D C = a 3 6
Do đó: V t = a 3 − a 3 6 = 5 a 3 6 ⇒ V b V t = 1 5 .
Đáp án B
Ta có: V A B C D . A ' B ' C ' D ' = a 3 .
Lại có: V C . B D C = 1 3 C C ' . S B D C = a 3 6
Do đó: V t = a 3 − a 3 6 = 5 a 3 6 ⇒ V b V t = 1 5 .
Cho hình lập phương A B C D . A ' B ' C ' D ' . Mặt phẳng B D C ' chia khối lập phương thành hai phần. Tính tỉ lệ thể tích phần nhỏ so với phần lớn
A. 5 6
B. 1 5
C. 1 3
D. 1 6
Cho hình lập phương ABCD.A’B’C’D’. I là trung điểm BB’. Mặt phẳng (DIC’) chia khối lập phương thành 2 phần có tỉ số thể tích phần bé chia phần lớn bằng:
A. 1:3
B. 7:17
C. 4:14
D. 1:2
Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Gọi M,N lần lượt là trung điểm của các cạnh A’B’ và BC. Mặt phẳng (DMN) chia hình lập phương thành 2 phần. Gọi V1 là thể tích của phần chứa đỉnh A, V2 là thể tích của phần còn lại. Tính tỷ số V 1 V 2
A. 2/3
B. 55/89
C. 37/48
D. 1/2
Cho hình lập phương ABCD.A' B'C' D' cạnh bằng a và K là một điểm nằm trên cạnh CC’ sao cho C K = 2 a 3 . Mặt phẳng α qua A, K và song song với BD chia khối lập phương thành hai phần có thể tích V 1 , V 2 V 1 < V 2 . Tính tỉ số V 1 V 2
A. V 1 V 2 = 1 4
B. V 1 V 2 = 1 2
C. V 1 V 2 = 2 3
D. V 1 V 2 = 1 3
Cho khối lập phương ABCD.A’B’C’D’ cạnh a. Các điểm E, F lần lượt là trung điểm của C’B’ và C’D’ . Mặt phẳng (AEF) cắt khối lập phương đã cho thành hai phần, gọi V 1 là thể tích khối chứa điểm A' và V 2 là thể tích khối chứa điểm C'. Khi đó V 1 V 2 là:
A. 25 47
B. 1
C. 2
D. 3
Cho khối lập phương ABCD.A’B’C’D’ cạnh bằng a. Các điểm E và F lần lượt là trung điểm của C’B’ và C’D’. Mặt phẳng (AEF) cắt khối lập phương đã cho thành hai phần, gọi V 1 là thể tích khối chứa điểm A’ và V 2 là thể tích khối chứa điểm C’. Khi đó V 1 V 2 là
A. 25 47 .
B.1
C. 17 25 .
D. 8 17 .
Cho hình lập phương A B C D . A ' B ' C ' D ' , gọi M và N lần lượt là tâm của các hình vuông A B C D và D C C ' D ' . Mặt phẳng A ' M N chia khối lập phương thành hai phần có thể tích là V 1 và V 2 V 1 < V 2 . Tính tỷ số V 2 V 1
A. 5 3
B. 5 2
C. 3 2
D. 2
Người ta cắt đôi đoạn dây thép dài 10m thành hai phần. Phần 1 lại cắt thành 6 phần bằng nhau và ghép thành một hình tứ diện, phần 2 lại cắt thành 12 phần bằng nhau và ghép thành một hình lập phương sao cho tổng diện tích xung quanh của hai hình là nhỏ nhất.
Gọi a là độ dài cạnh của hình tứ diện, b là độ dài cạnh của hình lập phương thì a + b là:
A. 5 + 5 3 3
B. - 5 + 5 3 3
C. - 5 + 20 3 3
D. 5 + 20 3 3
Cho hình lập phương ABCD.A'B'C'D' cạnh a. Các điểm E và F lần lượt là trung điểm của C'B' và C'D'. Mặt phẳng ( AEF) cắt khối lập phương đã cho thành hai phần, gọi V 1 là thể
tích khối chứa điểm A' và V 2 là thể tích khối chứa điểm C’. Khi đó tỉ số V 1 V 2 bằng
A. 25 47
B. 1
C. 17 25
D. 8 17