Cho hình lập phương ABCD.A'B'C'D' có A(0;0;0), B(1;0;0), D(0;1;0) và A'(0;0;1). Gọi (P): ax+by+cz+d=0 là mặt phẳng chứa đường thẳng CD' và tạo với mặt phẳng (BB'D'D) góc nhỏ nhất. Cho T=a+2b+3c+4d. Tìm giá trị nguyên âm lớn nhất của T biết a là số nguyên.
A. -1
B. -2
C. -6
D. -4
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P): x+2y-2z-10=0 với hai điểm A(1;2;0), B(-1;3;1). Gọi (Q) là một mặt phẳng đi qua A, B đồng thời tạo với (P) một góc nhỏ nhất. Biết rằng phương trình tổng quát của mặt phẳng (Q) là: ax+by+cz+d=0 với a, b, c, d là những số thực, Khi đó giá trị của tổng S = b + c + d bằng
A. 10
B. 12
C. 18
D. -8
Trong không gian với hệ tọa độ Oxyz, cho ba mặt phẳng (P): x-2y+z-1=0;(Q): x-2y+z+8=0;(C): x-2y+z=0 Một đường thẳng d thay đổi cắt ba mặt phẳng (P), (Q), (R) lần lượt tại A, B, C. Tìm giá trị nhỏ nhất của T = A B 2 + 144 A C
A. 72 3 3
B. 96.
C. 108.
D. 72 4 3
Trong không gian với hệ trục tọa độ Oxyz, cho ba mặt phẳng P : x - 2 y + z - 1 = 0 , Q : x - 2 y + z + 8 = 0 và R : x - 2 y + z - 4 = 0 . Một đường thẳng d thay đổi cắt ba mặt phẳng (P), (Q), (R) lần lượt tại A, B, C. Tìm giá trị nhỏ nhất của biểu thức T = A B 2 + 144 A C
A. 72 3 3
B. 96.
C. 108.
D. 72 4 3
Cho hình lập phương A B C D . A ' B ' C ' D ' có A 0 ; 0 ; 0 , B 1 ; 0 ; 0 , D 0 ; 1 ; 0 v à A ' 0 ; 0 ; 1 . Gọi P : a x + b y + c z + d = 0 là mặt phẳng chứa đường thẳng CD' và tạo với mặt phẳng (BB'D'D) góc nhỏ nhất. Cho T = a + 2 b + 3 c + 4 d . Tìm giá trị nguyên âm lớn nhất của T biết a là số nguyên.
A. -1
B. -2
C. -6
D. -4
Trong không gian Oxyz, cho hai điểm A(-3;0;1), B(1;-1;3) và mặt phẳng (P):x - 2y + 2z - 5 = 0. Đường thẳng (d) đi qua A, song song với mặt phẳng (P) sao cho khoảng cách từ N đến đường thẳng d nhỏ nhất, Đường thẳng (d) có một VTCP là u → = ( 1 ; b ; c ) khi đó b c bằng
A. b c = 11
B. b c = - 11 2
C. b c = - 3 2
D. b c = 3 2
Trong không gian Oxyz mặt phẳng đi qua ba điểm A (1;2;2), B (3;-3;-1), C (-1;0;2) và mặt phẳng (P): 2x + y - 2z - 1= 0 Xét là điểm thay đổi thuộc mặt phẳng (P) giá trị nhỏ nhất của | M A ⇀ + 2 M B ⇀ + 3 M C ⇀ bằng:
A. 8 3
B. 5 3
C. 10 3
D. 9
Trong không gian với hệ toạ độ Oxyz, cho điểm A(-3;-1;3) và đường thẳng d: x - 1 3 = y - 1 2 = z - 5 2 , mặt phẳng (P):x+2y-z+5=0. Đường thẳng Δ qua A và cắt d tại điểm B(a;b;c) và tạo với mặt phẳng (P) góc 30 ° . Tính T=a+b+c.
A. T = 14
B. T = 0
C. T = 21
D. T = 7
Trong không gian Oxyz, cho đường thẳng d: x - 3 2 = y + 2 1 = z + 1 - 1 và mặt phẳng có phương trình (P): x+y+z+2=0. Đường thẳng Δ nằm trong mặt phẳng (P), vuông góc với đường thẳng d đồng thời khoảng cách từ giao điểm I của d với (P) đến Δ bằng 42 . Gọi M(5;b;c) là hình chiếu vuông góc của I trên Δ . Giá trị của bc bằng:
A. -10.
B. 10
C. 12
D. -20