Cho hình lăng trụ đứng ABC.A’B’C’ có một đáy là tam giác ABC vuông tại A; AB = 3a,BC = 5a. Biết khối trụ có hai đáy là hai đường tròn nội tiếp hai tam giác ABC, A’B’C’ và có thể tích bằng 2 π a 3 . Chiều cao AA’ của lăng trụ bằng
A. 3a
B. 3 a
C. 2a
D. 2 a
Cho hình lăng trụ đứng ABC.A’B’C’, có đấy ABC là tam giác vuông cân tại A, biết AA’ = 2a, A’B = 3a. Thể tích khối lăng trụ ABC.A’B’C’ là:
A. 5a3
B. 13a3
C. 5 a 3 2
D. 13 a 3 2
Cho hình lăng trụ đứng ABC.A’B’C’ có đáy là tam giác vuông cân tại B, A B = a , A ' B = a 3 . Thể tích khối lăng trụ ABC.A’B’C’ bằng:
A. a 3 3 2
B. a 3 6
C. a 3 2
D. a 3 2 2
Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông cân tại B, AB = a, góc giữa đường thẳng A’C và mặt phẳng (ABC) bằng 30 ° . Thể tích của khối lăng trụ ABC.A’B’C’ bằng:
A. a 3 6 18
B. 2 a 3 6 3
C. a 3 6 2
D. a 3 6 6
Cho lăng trụ đứng ABC.A’B’C’ với đáy ABC là tam giác vuông cân tại A. Biết A B = 3 a , góc giữa đường thẳng A’B và mặt đáy lăng trụ bằng 30 ∘ . Tính thể tích V của khối chóp A’.ABC.
A. V = 3 3 a 3 2
B. V = 9 3 a 3 2
C. V = 27 3 a 3 2
D. V = 9 3 a 3 3
Cho lăng trụ đứng ABC.A’B’C’ có đáy là tam giác vuông tại B, AB = a, BC = 2a. Biết thể tích của khối lăng trụ ABC.A’B’C’ bằng 2 2 a 3 . Gọi α là góc giữa mặt phẳng (A’BC) với mặt phẳng (ABC). Khi đó cos của góc α bằng:
Cho hình lăng trụ đứng ABC.A’B’C’ có tam giác ABC vuông tại A, AB = AA’ = a, AC = 2a. Tính thể tích khối lăng trụ đã cho.
B. a3
C. 2a3
Cho lăng trụ ABC.A’B’C’ có đáy ABC là tam giác đều cạnh a, AA'=3a/2. Biết rằng hình chiếu vuông góc của A’ lên (ABC) là trung điểm BC. Tính thể tích V của khối lăng trụ đó
A. V= a 3
B. V= 2 a 3 3
C. V= 3 a 3 4 2
D. V= a 3 3 2
Cho hình lăng trụ ABC.A’B’C’ có đáy là tam giác vuông tại B, AB=a, BC=2a. Hình chiếu vuông góc của A’ trên đáy ABC là trung điểm H của cạnh AC, đường thẳng A’B tạo với đáy một góc 45 ° . Tính thể tích V của khối lăng trụ ABC.A’B’C’
A. V = a 3 5 6
B. V = a 3 5 3
C. V = a 3 5 2
D. V = a 3 5