Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\) ,\(SA=a\) và vuông góc với đáy \(\left(ABCD\right)\) .Gọi \(M\) là trung điểm của \(BC\).Tính cosin của góc giữa hai mặt phẳng \(\left(SMD\right)\) và \(\left(ABCD\right)\).
Cho hình hộp ABCD.A'B'C'D'. Gọi M và N lần lượt là trung điểm của hai cạnh bên AA' và CC'. Một điểm P nằm trên cạnh bên DD'.
a) Xác định giao điểm Q của đường thẳng BB' với mặt phẳng (MNP).
b) Mặt phẳng (MNP) cắt hình hộp theo một thiết diện. Thiết diện đó có tính chất gì?
c) Tìm giao tuyến của mặt phẳng (MNP) với mặt phẳng (ABCD) của hình hộp.
Cho hình chóp tứ giác đều S.ABCD có các cạnh bên và các cạnh đáy đều bằng a. Gọi O là tâm của hình vuông ABCD.
a) Tính độ dài đoạn SO.
b) Gọi M là trung điểm của đoạn SC. Chứng minh hai mặt phẳng (MBD) và (SAC) vuông góc với nhau.
c) Tính độ dài đoạn OM và tính góc giữa hai mặt phẳng (MBD) và (ABCD).
Cho tứ diện ABCD. Gọi M,N,P lần lượt là trung điểm của các cạnh BC, BD,CD.
a. Xác định giao tuyến của hai mặt phẳng (AMN) và (ACD).
b. Chứng minh rằng đường thẳng BC song song với mặt phẳng (ANP)
c. Gọi G, H lần lượt là trọng tâm của tam giác ABC và ACD. Chứng minh GH // BD.
Cho hình hộp ABCD.A'B'C'D'. Gọi M,N thứ tự là trung điểm CD và DD'; G và G' lần lượt là trọng tâm tứ diện A'D'MN và BCC'D'. Chứng minh rằng đường thẳng GG' và mặt phẳng (ABB'A') song song với nhau
Cho hình lăng trụ ABC.A'B'C' có đáy ABC là tam giác đều cạnh a; tam giác A’BC đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy (ABC) M là trung điểm của cạnh CC’. Tính cosin góc α là góc giữa hai đường thẳng AA’ và BM
Cho hình chóp S.ABC có đấy ABC là tam giác đều cạnh a, SA = SB = SC = 2a. Gọi o là trung điểm AC, G là trọng tâm tam giác ABC a) chứng minh (SGO) vuông góc với (ABC) b) tính góc giữa hai mặt phẳng (SAB) và (ABC) c) tính khoảng cách giữa AB và SC
Cho hình hộp ABCD.A’B’C’D’. Gọi M, N lần lượt là trung điểm của CD và DD’; G và G’ lần lượt là trọng tâm của hai tứ diện A’D’NM và BCC’D’. Đặt A B → = a → ; A A ' → = b → ; A D → = c → .
Đường thẳng GG’ song song với mặt phẳng (AA’B’B) vì:
A. Vecto G G ' → cùng phương với vecto C D →
B. Vecto G G ' → cùng phương với vecto M N →
C. Vecto G G ' → đồng phẳng với hai vecto a → v à b →
D. Vecto G G ' → đồng phẳng với hai vecto b → v à c → .
Cho tứ diện đều ABCD có cạnh a. Gọi G, G’ lần lượt là trọng tâm của tam giác ABC và ABD. Diện tích của thiết diện của hình tứ diện khi cắt bởi mặt phẳng (BGG’) là:
A.
B.
C.
D.
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông cạnh $a$, $SA=a\sqrt{2}$. Các mặt phẳng $\left( SAB \right)$ và $\left( SAD \right)$ cùng vuông góc với mặt phẳng $\left( ABCD \right)$. Gọi $N$ là trung điểm cạnh $CD$.
a. Chứng minh rằng $BC\bot \left( SAB \right)$ và $\left( SAC \right)\bot \left( SBD \right)$.
b. Tính khoảng cách giữa hai đường thẳng $AN$ và $SC$ theo $a$.