b: Qua A kẻ đường thẳng vuông góc với AP cắt BC tại N
Xét ΔABN và ΔADP có
góc B=góc D=90 độ
góc BAN=góc DAP
=>ΔABN đồng dạng với ΔADP
=>AB/AD=AN/AP=1/3
=>AN=1/3AP
ΔANM vuông tại N có AB là đường cao
nen 1/AB^2=1/AM^2+1/AN^2=1/AM^2+9/AP^2
b: Qua A kẻ đường thẳng vuông góc với AP cắt BC tại N
Xét ΔABN và ΔADP có
góc B=góc D=90 độ
góc BAN=góc DAP
=>ΔABN đồng dạng với ΔADP
=>AB/AD=AN/AP=1/3
=>AN=1/3AP
ΔANM vuông tại N có AB là đường cao
nen 1/AB^2=1/AM^2+1/AN^2=1/AM^2+9/AP^2
Cho hình vuông ABCD, lấy M thuộc BC. Đường thẳng AM cắt CD tại P. Kẻ đường thẳng EF bất kì vuông góc với AM( E thuộc AB, F thuộc CD). Đường phân giác của góc DAM cắt CD tại K. CMR:
a)EF=BM+DK
b)1/AM2+ 1/AP2 =1/AB2
c. Hình thang ABCD có AB // CD, AB = 7,5cm, CD = 12cm. Lấy M là trung điểm CD, MA cắt BD tại E, MB cắt AC tại F. Chứng minh EF // AB và tính EF.
D.Cho tam giác ABC, vẽ đường thẳng bất kì song song BC cắt AB, AC tại M và N. Qua N vẽ đường thẳng song song CM cắt AB tại D. Chứng minh AM2 = AB.AD
1) Cho tam giác ABC có phân giác AD và trung tuyến BE cắt nhau tại O. Đường thẳng qua O và song song với AC cắt AB và BA lần lượt tại M và N. Tình độ dài các cạnh AB và BC, biết rằng AM=12cm, AC=40cm, CN=14cm
2)cho tam giác ABC cân tại A có CD đường cao. Trên các cạnh CB và CA lấy các điểm E và F sao cho DC=CE=CF. Đường thẳng qua E song song với AB cắt CD tại K và AC tại N, đường thẳng qua F và song song với AB cắt BC tại M. Tính độ dài các cạnh tam giác ABC, biết rằng EM=9cm, FN=12cm, IK=6cm
3)Cho hình thang cân ABCD(AB//CD). Đường cao AH cắt đường chéo BD tại K. AD và BC cắt nhau tại M. Tính độ dài AM, biết rằng AD=20cm, DK/KB=2/3.
Cho hình chữ nhật ABCD . M là hình chiếu của A trên BD . a ) chứng minh tam giác MAD đồng dạng với tam giác ABD b ) nếu AB = 8 cm , AD = 6 cm tính DM c ) đường thẳng AM cắt DC và BC theo thứ tự N và P chứng minh AM ^2 = MN . MP d) trên AB và CD lấy điểm E và F EF cắt BD tại K chứng minh AB / BE + BC / BF = BD / Bk
Cho tam giác ABC, M là điểm bất kì trên cạnh BC. Qua B và C kẻ đường thẳng song song với AM, cắt các đường thẳng AC và AB tương ứng tại E và D. CMR :\(\dfrac{1}{AM}=\dfrac{1}{BE}+\dfrac{1}{CD}\)
Cho hình thang ABCD (AB//CD) gọi M là trung điểm của CD . E là giao điểm của BD và AM , F là giao điểm của BM và AC a. C/M EF // AB b. Đường thẳng EF cắt AD,BC lần lượt tại H và N. C/M HE=EF=FN
Cho hình thang ABCD(BC//AD). M,N là 2 điểm trên AB,CD sao cho AM/AB=CN/CD. Đường thẳng MN cắt AC tại E. MN cắt BD tại F. Kẻ MI//BD(I thuộc AD).
a)C/m: IN//AC
b)IN cắt BD tại H, MI cắt AC tại K. C/m: KH//MN
1. Cho hình thoi ABCD có số đo góc A bằng 1200. Gọi O là giao điểm của hai đường chéo AC và BD. Trên tia BC lấy điểm M sao cho BM=4/3BC. Đường thẳng AM cắt CD tại N. Trên các đoạn thẳng AB, AD lần lượt lấy các điểm E, F sao cho CE//NF. Tính số đo góc EOF
2. Cho điểm D thay đổi trên cạnh BC của tam giác nhọn ABC (D khác B và C). Từ D kẻ đường thẳng song song với AB cắt cạnh AC tại điểm N. Cũng từ D kẻ đường thẳng song song với AC cắt cạnh AB tại điểm M. Tìm vị trí của D để đoạn thẳng MN có độ dài nhỏ nhất.
3.. ABCD là hình chữ nhật có AB //CD, AB = 2CB. Từ A kẻ đường thẳng vuông góc với đường chéo BD tại H. Trên HB lấy điểm K sao cho HK = HA. Từ K kẻ đường thẳng song song với AH cắt AB tại E. Lấy M trung điểm DE, tia AM cắt DB tại N, cắt DC tại P.
Tính tỷ số diện tích tam giác AND với diện tam giác PMD?
Cho hình vuông ABCD trên cạnh BC lấy điểm E. Từ A kẻ đường thẳng vuông góc vơi AE cắt đường thẳng CD tại F. Gọi I là trung điểm của EF. AI cắt CD tại M. Qua E dựng đường thẳng song song với CD cắt AI tại N.
a) Chứng minh tứ giác MENF là hình thoi.
b) Chứng minh chi vi tam giác CME không đổi khi E chuyển động trên BCCho hình vuông ABCD trên cạnh BC lấy điểm E. Từ A kẻ đường thẳng vuông góc vơi AE cắt đường thẳng CD tại F. Gọi I là trung điểm của EF. AI cắt CD tại M. Qua E dựng đường thẳng song song với CD cắt AI tại N.
a) Chứng minh tứ giác MENF là hình thoi.
b) Chứng minh chi vi tam giác CME không đổi khi E chuyển động trên BC