Cho hình chữ nhật ABCD. Gọi M là trung điểm của CD, N là một điểm trên đường chéo AC sao cho BNM = 90o . Gọi F là điểm đối xứng của A qua N, I là trung điểm của BF. CMR:
a. Tứ giác CINM là bình bình hành.
b. BF \(\perp\)AC
Cho hình chữ nhật ABCD có M là trung điểm của CD, lấy N trên AC sao cho góc BNM bằng 90 độ. Lấy điểm F đối xứng với A qua N. Gọi I là trung điểm của BF. C/m rằng
a) Tứ giác CINM là hình bình hành
b) BF vuông góc AC
cho hình chữ nhật abcd có m là trung điểm của dc. lấy n trên ac sao cho góc bnm = 90 độ. lấy f đối xứng vs a qua n. gọi i là trung điểm của bf. cmr: a, tứ giác cinm là hình bình hành b, bf vuông góc vs ac
Cho hình chữ nhật ABCD. Gọi M là trung điểm của CD, N là một điểm trên đường chéo AC sao cho \(\widehat{BNM}\)=90o. Gọi F là điểm đối xứng của A qua N, I là trung điểm của BF. CMR
a) BF \(\perp\)AC
cho hình chữ nhật abcd .gọi m là trung điểm của cạnh cd và n là một điểm trên đường chéo ac sao cho góc bnm =90 độ .gọi f là điểm đối xứng của a qua n .cmr fb vuông góc với ac
cho hình chữ nhật abcd . gọi m là trung điểm của cd và n là một điểm trên đường chéo ac sao cho góc BNM=90 độ . gọi f là điểm đối xứng của a qua n . Chứng minh rằng FB vuông góc với AC
Cho hình chữ nhật abcd, gọi M là trung điểm CD và N là điểm thuộc đường chéo AC sao cho ^BNM = 90*. Gọi F là điểm đối xứng của A qua N. CMR: FE vuông góc AC.
cho hình bình hành abcd,gọi e là điểm đối xứng với điểm a qua b, lấy điểm f sao cho d là trung điểm của af
1chứng minh tứ giác dbec là hình bình hành
2chúng minh c là trung điểm của đoạn ef
3chứng minh ba đường thẳng ac,bf,de đồng quy
4gọi m là giao điểm của cd và bf,nlaf giao điểm của am và cf
chứng minh fn=2/3fc
Cho hình bình hành ABCD. Gọi E là trung điểm của AB, F là trung điểm của CD
a, Chứng minh tứ giác AECF là hình bình hành
b, DE cắt AC tại M, BF cắt AC tại N. Chứng minh AM = MN = NC
c, Gọi O là giao điểm của AC và BD. Chứng minh E và F đối xứng nhau qua O