a: AB\(\perp\)DA
AB\(\perp\)CD
b; CD\(\perp\)BC
CD\(\perp\)AD
c: BC\(\perp\)SA
AD\(\perp\)SA
a: AB\(\perp\)DA
AB\(\perp\)CD
b; CD\(\perp\)BC
CD\(\perp\)AD
c: BC\(\perp\)SA
AD\(\perp\)SA
Cho hình chóp S.ABCD có SA vuông góc với đáy. Đáy ABCD là hình thang vuông ở A, B sao cho AB = BC = AD/2 = a. SA = 2a. a. Xác định góc giữa (SAB) và (SCD). b, Xác định góc giữa (SBD) và (SAB). c. Xác định góc giữa (SBC) và (SCD).
cần giải gấp
Cho hình chóp S.ABCD có đáy là hình vuông cạnh = a, SA vuông góc (ABCD). Kẻ AH vuông góc SB, AK vuông góc SB.
a) BC vuông góc (SAB)
b) AH vuông góc SC
c) Gọi M là giao điểm của SC với (AHK). CM: HK vuông góc với AM
d) AH=?, HK=? biết SA=a\(\sqrt{3}\)
Cho hình chóp S.ABCD đáy là hình chữ nhật, AB = a, BC = a√3, tam giác SBC vuông tại B, tam giác SCD vuông tại D, SD = a√5
a) Chứng minh: SA vuông góc với (ABCD) và tính độ dài SA
b) Đường thẳng đi qua A vuông góc với AC cắt CB, CD lần lượt tại I và J. Gọi H là hình chiếu của A trên SC, K và L lần lượt là giao điểm của SB, SC với ( HIJ). Chứng minh: AM vuông góc với (SBC), AM vuông góc với (SCD)
c) Tính diện tích AKHL
Cho hình chóp S.ABCD đáy là hình thang vuông tại A và B, AB = BC = a, AD = 2a, SA vuông góc với đáy, SA = a. Gọi M, N lần lượt là trung điểm của SB, CD. Tính côsin góc giữa MN và (SAC)
A . 1 5
B . 3 5 10
C . 55 10
D . 2 5
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, SA vuông góc (ABCD). AH, AK lần lượt là đường cao của tam giác SAB, SAD.
a/ C/m: CD vuông góc SD và AK vuông góc SC.
b/ C/m: SC vuông góc (AHK).
c) Tính góc giữa SO với (ABCD)
d) Tính góc giữa SO với (SAB)
e) Tính khoảng cách từ B đến (SCD)
f) Tính khoảng cách từ H đến (SAC)
Có hình chóp S. ABCD có đáy là hình vuôn cạnh a . SA vuông góc (ABCD) và SA= a căn6/3
a. Chứng minh CD vuông góc (SAD)
b. P, Q lần lượt là hình chiếu vuông góc của A lên SB , SD . chứng minh PQ vuông góc SC
C. Tính góc SC và (ABCD)
Chóp SABCD , ABCD là hình chữ nhật tâm O SA=5a ; AB=2a ; AD=a căn 3 ; SA vuông góc với đáy a) Cm BC vuông góc (SAB) ; CD vuông góc (SAD ) ; (SCD) vuông góc (SAD) b) Tính góc (SC:SAD) ; (SC:SAD) ; (SC:ABCD) c) Tính khoảng cách từ A đến (SBC) và d(A,(SCD)) d)Tính góc giữa 2 mp (SBD) và (ABCD) ; (SCD) và (ABCD)
Hình chóp S.ABCD có đáy là hình thang vuông ABCD vuông tại A và D, có AB = 2a, AD = DC = a, có cạnh SA vuông góc với mặt phẳng (ABCD) và SA = a.
a) Chứng minh mặt phẳng (SAD) vuông góc với mặt phẳng (SDC), mặt phẳng (SAC) vuông góc với mặt phẳng (SCB).
b) Gọi φ là góc giữa hai mặt phẳng (SBC) và (ABCD), tính tanφ.
c) Gọi (α) là mặt phẳng chứa SD và vuông góc với mặt phẳng (SAC). Hãy xác định (α) và xác định thiết diện của hình chóp S.ABCD với (α)
Hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh SA = a và vuông góc với mặt phẳng (ABCD).
a) Chứng minh rằng các mặt bên của hình chóp là những tam giác vuông.
b) Mặt phẳng (α) đi qua A và vuông góc với cạnh SC lần lượt cắt SB, AC, SD tại B', C', D'. Chứng minh B'D' song song với BD và AB' vuông góc với SB.