Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M, N lần lượt là trung điểm của các cạnh SA và SC. Mặt phẳng (BMN) cắt SD tại điểm P. Đặt t = V S . B M P N V S . A B C D . Tìm t.
A. t = 1 8
B. t = 1 12
C. t = 1 6
D. t = 1 16
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, gọi M là trung điểm của cạnh bên SC. Mặt phẳng (P) qua AM và song song với BD lần lượt cắt các cạnh bên SB, SD tại N, Q. Đặt t = V S . A N M Q V S . A B C D . Tính t
A. 1 3
B. 2 5
C. 1 6
D. 1 4
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là trung điểm của cạnh SA. Mặt phẳng (BCM) cắt cạnh SD tại điểm N. Đặt t = V S . B C N M V S . A B C D . Tìm t.
A. 3 4
B. 1 4
C. 3 8
D. 1 8
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của các cạnh AB. SC và P là điểm trên cạnh SD sao cho S P S D = 3 4 . Mặt phẳng (MNP) cắt cạnh SB tại điểm Q. Tỉ số S Q S B bằng
A. 3 4
B. 2 3
C. 2 5
D. 4 3
Cho hình chóp S.ABCD có đáy hình thoi cạnh 3a, SA=SD=3a, SB=SC=3a 3 . Gọi M, N lần lượt là trung điểm của các cạnh SA và SD, P là điểm thuộc cạnh AB sao cho AP=2a Tính diện tích thiết diện của hình chóp khi cắt bởi mặt phẳng (MNP)
Cho hình chóp S.ABCD có đáy là hình thoi cạnh 3a, SA = SD = 3a, SB = SC = 3 a 3 . Gọi M, N lần lượt là trung điểm của cạnh SA và SD, P là điểm thuộc cạnh AB sao cho AP = 2a. Tính diện tích thiết diện của hình chóp khi cắt bởi mặt phẳng (MNP).
A. 9 a 2 139 4
B. 9 a 2 139 8
C. 9 a 2 7 8
D. 9 a 2 139 16
Cho khối chóp S.ABCD có đáy là hình bình hành, thể tích bằng 1. Gọi M là trung điểm cạnh SA; các điểm E,F lần lượt là điểm đối xứng của A qua B và D. Mặt phẳng (MEF) cắt các cạnh SB,SD lần lượt tại các điểm N,P. Thể tích của khối đa diện ABCDMNP bằng
A. 2 3
B. 1 3
C. 3 4
D. 1 4
Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi I là trung điểm cạnh SC. Xét (α) là mặt phẳng thay đổi qua AI và cắt các cạnh SB, SD lần lượt tại M và N. Tổng giá trị nhỏ nhất là lớn nhất của biểu thức T = S M S B + S N S D bằng
A. 17 6
B. 13 6
C. 7 3
D. 5 3
Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Gọi M là điểm di động trên cạnh SC (M không trùng S và C), mặt phẳng (α) chứa đường thẳng AM song song với BD lần lượt cắt các cạnh SB, SD tại E và F. Giá trị T = S B S E + S D S F - S C S M bằng
A. 1
B. 2
C. 1 2
D. 3 2