Chọn C
Gọi O là giao điểm của hai đường chéo của hình bình hành ABCD.
Gọi I là gioa điểm của BP và MN. Khi đó
Chọn C
Gọi O là giao điểm của hai đường chéo của hình bình hành ABCD.
Gọi I là gioa điểm của BP và MN. Khi đó
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, gọi M là trung điểm của cạnh bên SC. Mặt phẳng (P) qua AM và song song với BD lần lượt cắt các cạnh bên SB, SD tại N, Q. Đặt t = V S . A N M Q V S . A B C D . Tính t
A. 1 3
B. 2 5
C. 1 6
D. 1 4
Cho hình chóp S.ABCD. Gọi M, N, P lần lượt là trung điểm của các cạnh SA, SB,SC. Mặt phẳng (MNP) cắt cạnh SD tại điểm Q. Đặt t = V S . M N P Q V S . A B C D . Tìm t.
A. t = 1 16
B. t = 1 8
C. t = 1 2
D. t = 1 4
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là trung điểm của cạnh SA. Mặt phẳng (BCM) cắt cạnh SD tại điểm N. Đặt t = V S . B C N M V S . A B C D . Tìm t.
A. 3 4
B. 1 4
C. 3 8
D. 1 8
Cho khối chóp S.ABCD có đáy là hình bình hành, thể tích bằng 1. Gọi M là trung điểm cạnh SA; các điểm E,F lần lượt là điểm đối xứng của A qua B và D. Mặt phẳng (MEF) cắt các cạnh SB,SD lần lượt tại các điểm N,P. Thể tích của khối đa diện ABCDMNP bằng
A. 2 3
B. 1 3
C. 3 4
D. 1 4
Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi I là trung điểm cạnh SC. Xét (α) là mặt phẳng thay đổi qua AI và cắt các cạnh SB, SD lần lượt tại M và N. Tổng giá trị nhỏ nhất là lớn nhất của biểu thức T = S M S B + S N S D bằng
A. 17 6
B. 13 6
C. 7 3
D. 5 3
Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Gọi M là điểm di động trên cạnh SC (M không trùng S và C), mặt phẳng (α) chứa đường thẳng AM song song với BD lần lượt cắt các cạnh SB, SD tại E và F. Giá trị T = S B S E + S D S F - S C S M bằng
A. 1
B. 2
C. 1 2
D. 3 2
Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi K là trung điểm SC. Mặt phẳng (P) qua AK cắt các cạnh SB, SD lần lượt tại M, N. Gọi V và V’ lần lượt là thể tích các khối chóp S.ABCD và S.AMKN. Tỉ số V ' V có giá trị nhỏ nhất bằng
A. 1 5 .
B. 3 8 .
C. 1 3 .
D. 1 2 .
Cho hình chóp tứ giác S.ABCD đáy là hình bình hành có thể tích bằng V. Lấy điểm B', D' lần lượt là trung điểm của các cạnh SB và SD. Mặt phẳng (AB'D') cắt cạnh SC tại C'. Khi đó thể tích khối chóp S.AB'C'D' bằng
A. V 3
B. 2 V 3
C. V 3 3
D. V 6
Cho hình chóp tứ giác S . A B C D đáy là hình bình hành có thể tích bằng V. Lấy điểm B’, D’ lần lượt là trung điểm của cạnh SB và SD. Mặt phẳng qua A B ' D ' cắt cạnh SC tại C’. Khi đó thể tích khối chóp S . A B ' C ' D ' bằng
A. V 3
B. 2 V 3
C. V 3 3
D. V 6