Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê vsbzhsjskskskssm

Cho hình chóp SABCD đáy là hình vuông cạnh a. SA=a căn 3. SA vuông góc với đáy. Tính khoảng cách a)SC đến BD b)SC đến AD

Hoàng Tử Hà
26 tháng 5 2021 lúc 9:57

a/ Kẻ \(CE//BD\Rightarrow BD//\left(SCE\right)\Rightarrow d\left(SC,BD\right)=d\left(BD,\left(SCE\right)\right)=d\left(B,\left(SCE\right)\right)\)

\(AB\cap\left(SCE\right)=\left\{E\right\}\Rightarrow\dfrac{d\left(B,\left(SCE\right)\right)}{d\left(A,\left(SCE\right)\right)}=\dfrac{EB}{EA}=\dfrac{1}{2}\)

\(\widehat{CAE}=\dfrac{1}{2}\widehat{DAB};\widehat{AEC}=\widehat{BDC}=\dfrac{1}{2}\widehat{ADC};\widehat{DAB}+\widehat{ADC}=180^0\Rightarrow\widehat{CAE}+\widehat{AEC}=90^0\Rightarrow\widehat{ACE}=90^0\)

\(\Rightarrow AC\perp EC\)

\(\left\{{}\begin{matrix}SA\perp CE\\AC\perp CE\end{matrix}\right.\Rightarrow CE\perp\left(SAC\right)\Rightarrow\left(SCE\right)\perp\left(SAC\right)\)

Kẻ \(AH\perp SC\Rightarrow AH\perp\left(SCE\right)\Rightarrow d\left(A,\left(SCE\right)\right)=AH=\dfrac{SA.AC}{\sqrt{SA^2+AC^2}}=..\)

\(\Rightarrow d\left(SC,BD\right)=d\left(B,\left(SCE\right)\right)=\dfrac{AH}{2}=...\)

b/ \(AD//BC\Rightarrow AD//\left(SBC\right)\Rightarrow d\left(SC,AD\right)=d\left(AD,\left(SBC\right)\right)=d\left(A,\left(SBC\right)\right)\)

Kẻ \(AK\perp BC\Rightarrow\left\{{}\begin{matrix}SA\perp BC\\AK\perp BC\end{matrix}\right.\Rightarrow\left(SBC\right)\perp\left(SAK\right)\)

Kẻ \(AM\perp SK\Rightarrow AM\perp\left(SBC\right)\Rightarrow d\left(A,\left(SBC\right)\right)=AM=\dfrac{SA.AK}{\sqrt{SA^2+AK^2}}=...=d\left(SC,AD\right)\)


Các câu hỏi tương tự
Lê vsbzhsjskskskssm
Xem chi tiết
Lê vsbzhsjskskskssm
Xem chi tiết
Lê vsbzhsjskskskssm
Xem chi tiết
Lê vsbzhsjskskskssm
Xem chi tiết
Lê vsbzhsjskskskssm
Xem chi tiết
Lê vsbzhsjskskskssm
Xem chi tiết
Lê vsbzhsjskskskssm
Xem chi tiết
37-Trần Vi Thảo 10A15
Xem chi tiết
Lê vsbzhsjskskskssm
Xem chi tiết