Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, AB = BC = a, AD = 2a, SA vuông góc với mặt đáy (ABCD), SA = a. Gọi M, N lần lượt là trung điểm của SB, CD. Tính cosin của góc giữa đường thẳng MN và (SAC)
A. 2 5
B. 55 10
C. 3 5 10
D. 1 5
Cho hình chóp S.ABC có đáy ABCD là hình thang vuông tại A và B A B = B C = a , A D = 2 a . SAvuông góc với mặt phẳng đáy, SA=a Gọi M,N lần lượt là trung điểm của SB và CD Tính cosin góc giữa M N v à S A C .
A. 1 5
B. 3 5 10
C. 55 10
D. 2 5
Cho hình chóp S.ABCD có đáy là hình thang vuông tại B. AB=BC=a, AD=2a. Biết SA vuông góc với đáy (ABCD) và SA=a. Gọi M,N lần lượt là trung điểm SB,CD. Tính sin góc giữa đường thẳng MN và mặt phẳng (SAC)
A. 5 5
B. 55 10
C. 3 5 10
D. 2 5 5
Cho hình chóp S.ABCD có đáy ABCD là hình thang cân, AB = BC = CD = a, AD = 2a. Hai mặt phẳng (SAB) và (SAD) cùng vuông góc với mặt phẳng đáy. Gọi M, N lần lượt là trung điểm của SB và CD. Tính cosin góc giữa MN và (SAC), biết thể tích khối chóp S.ABCD bằng a 3 3 4
A . 5 10
B . 3 310 20
C . 310 20
D . 3 5 10
Cho hình chóp S.ABCD đáy ABCD là hình thang cân, A D = a , A B = a , B C = a , C D = 2 a . Hai mặt phẳng (SAB) và (SAD) cùng vuông góc với mặt phẳng (ABCD). Gọi M, N lần lượt là trung điểm của SB và SD. Tính cosin góc giữa MN và (SAC) biết thể tích khối chóp S.ABCD bằng a 3 3 4
A. 310 20
B. 3 5 10
C. 3 310 20
D. 5 10
Cho hình chóp S.ABCD đáy là hình thang vuông tại A và B , AB=BC= a, AD= 2a vuông góc với đáy , SA=a .Gọi M,N lần lượt là trung điểmSB,CD. Tính côsin góc giữa MN và (SAC)
A. 1 5
B. 3 5 10
C. 55 10
D. 2 5
Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B. Hình chiếu vuông góc của S trên mặt đáy (ABCD) trùng với trung điểm AB. Biết AB = a, BC = 2a, BD = a 10 . Góc giữa hai mặt phẳng (SBD) và mặt phẳng đáy là 600. Tính thể tích V của khối chóp S.ABCD theo a
A. V = 3 30 a 3 8
B. V = 30 a 3 4
C. V = 30 a 3 12
D. V = 30 a 3 8
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, AB = AD = 2a, CD = a. Gọi I là trung điểm của cạnh AD, biết hai mặt phẳng (SBI); (SCI) cùng vuông góc với đáy và thể tích khối chóp S. ABCD bằng 3 15 a 3 5 . Tính góc giữa hai mặt phẳng (SBC); (ABCD).
A. 600
B. 300
C. 360
D. 450
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, cạnh bên SA vuông góc với đáy và SA = 2a. Gọi B’, D’ lần lượt là hình chiếu vuông góc của A trên các cạnh SB, SD. Mặt phẳng (AB’D’) cắt cạnh SC tại C’. Tính thể tích của khối chóp S.AB’C’D’.
A. a 3 3
B. 16 a 3 45
C. a 3 2
D. a 3 2 2