Ta có: `EF` là đường trung bình của tam giác `ABC` nên `EF`//`AB`
`ABCD` là hình thang => `CD`//`AB`
Do đó: `EF`//`CD` `(đpcm)`
Ta có: `EF` là đường trung bình của tam giác `ABC` nên `EF`//`AB`
`ABCD` là hình thang => `CD`//`AB`
Do đó: `EF`//`CD` `(đpcm)`
Cho hình chóp S.ABCD, có đáy ABCD là hình thang có đáy lớn AD . Gọi E, F lần lượt là trung điểm của SA, SD.
a) Tìm giao tuyến của các cặp mặt phẳng: (SAC) và (SBD), (SAD) và (SBC).
b) Chứng minh EF// (ABCD) và EF// (SBC)
c) Gọi K là giao điểm của AB và CD. Tìm M, N lần lượt là giao điểm của SB và (CDE); SC và (EFM). Từ đó, tìm thiết diện của hình chóp cắt bởi mặt phẳng (KEF)
d) Cho AD=2BC. Tính tỉ số diện tích của tam giác KMN và tam giác KEF .
giúp mình giải câu d với ạ
Cho hình chóp S.ABCD có đáy là hình thang ABCD, đáy lớn AD. Gọi E và F là hai điểm lần lượt nằm trên hai cạnh SB và CD. Gọi H là giao điểm của AC và BF. Tìm giao điểm của EF với mặt phẳng (SAC)
A. Là giao điểm của EF và SH
B. Là giao điểm của EF và HA
C.Là giao điểm của EF và HC
D. Tất cả sai
Cho hình chóp SABCD có đáy ABCD là hình thang với AB//CD. Gọi M,N,P,Q lần lượt là trung điểm của SD,SC,SB,SA. Chứng minh (MNPQ)//(ABCD)
Cho hình chóp S.ABCD có đáy ABCD là hình thang,AB là đáy lớn,O là giao điểm của AC và BD. Gọi M,N lần lược là trung điểm của SB và SB a) Chứng minh CD // (SAB) b) Tìm giao tuyến của hai mặt phẳng (CMN) và (ABCD) c) Gọi P là trung điểm của SC, I là giao điểm của OP và (CMN). Tính tie số IP/IO
Cho hình chóp S.ABCD, ABCD là hình thang, đáy lớn AD=2BC. Gọi M, N lần lượt là trung điểm của AD, CD. a/. Chứng minh: MN//(SAC). b/. Gọi K SB sao cho KB 2KS . Xác định giao điểm của đường thẳng SA và (MNK). c/. Gọi G là trọng tâm tam giác CDM. Chứng minh KG//SD.
Cho hình chóp S.ABCD có đáy là hình thang, đáy lớn AB. Gọi M, N lần lượt là trung điểm của SA, SB. Gọi P là giao điểm của SC và (AND). AN cắt DP tại I. SABI là hình gì?
A. Hình bình hành
B. Hình chữ nhật
C. Hình vuông
D. Hình thoi
Cho hình chóp S.ABCD có đáy ABCD là hình thang,AB là đáy lớn,O là giao điểm của AC và BD. Gọi M,N lần lược là trung điểm của SB và SD a) Chứng minh CD // (SAB) b) Tìm giao tuyến của hai mặt phẳng (CMN) và (ABCD) c) Gọi P là trung điểm của SC, I là giao điểm của OP và (CMN). Tính tỉ số IP/IO
cho hình chóp s abcd có đáy abcd là hình bình thang AD//BC và AD bằng 2BC gọi E,F lần lượt là trung điểm SA và CD chứng minh CI//(BEF)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, SA ⊥ (ABCD) và S A = a 15 Gọi M, N lần lượt là trung điểm của BC và CD: Chứng minh (SAC) ⊥ (SBD).