Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với đáy và SA=a. Tính góc giữa đường thẳng SB và mặt phẳng (SAC).
A. 30°
B. 45°
C. 60°
D. 90°
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với đáy và SA=a. Tính góc giữa đường thẳng SB và mặt phẳng (SAC).
A. 30°
B. 45°
C. 60°
D. 90°
Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh AB = a (a>0) Góc giữa mặt bên và mặt đáy bằng 60 ° Tính thể tích khối chóp S.ABCD:
A. a 3 3 2
B. a 3 6
C. a 3 3 3
D. a 3 3 6
Cho hình chóp S.ABCD có đáy BACD là hình vuông cạnh a, cạnh bên SA = a và vuông góc với mặt đáy (ABCD). Trên SB, SD lần lượt lấy hai điểm M, N sao cho S M S B = m > 0 , S N S D = n > 0 . Tính thể tích lớn nhất V max của khối chóp S,AMN biết 2 m 2 + 3 n 2 = 1 .
A. V max = a 3 6 72
B. V max = a 3 48
C. V max = a 3 3 24
D. V max = a 3 6
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, cạnh A B = a , A D = a 3 . Cạnh bên S A = a 2 và vuông góc với mặt phẳng đáy. Góc giữa đường thẳng SB và mặt phẳng S A C bằng:
A. 75 o
B. 60 o
C. 45 o
D. 30 o
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, cạnh bên SA vuông góc với mặt phẳng (ABCD). Góc giữa hai mặt phẳng (SBD) và (ABCD) bằng 60 ° . Gọi M, N lần lượt là trung điểm của các cạnh SB, SC. Thể tích khối chóp S.ADNM bằng
A. 6 8 a 3
B. 3 6 16 a 3
C. 6 16 a 3
D. 6 24 a 3
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và góc A B C ^ = 60 ° , cạnh bên SA=a và vuông góc với mặt đáy. Tính bán kính R của mặt cầu ngoại tiếp tứ diện S.ACD
A. R = a 5 2
B. R = a
C. R = a 7 12
D. R = a 2
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a. Cạnh bên SA = a và SA vuông góc với đáy. Tính góc giữa đường thẳng SB và CD
A. 90 ∘
B. 60 ∘
C. 30 ∘
D. 45 ∘
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Hai mặt phẳng (SAB) và (SAC) cùng vuông góc với đáy (ABCD) và SA = 2a. Tính cosin của góc giữa đường thẳng SB và mặt phẳng (SAD)
A. 5 5
B. 2 5 5
C. 1 2
D. 1