Chọn đáp án C.
Gọi O là tâm của hình vuông ABCD thì B D ⊥ S A O
Chọn đáp án C.
Gọi O là tâm của hình vuông ABCD thì B D ⊥ S A O
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA vuông góc với mặt phẳng đáy và mặt phẳng (SBD) tạo với mặt phẳng (ABCD) một góc bằng 60 ° Gọi M là trung điểm của AD. Tính khoảng cách giữa hai đường thẳng SC và BM
A. 2 a 11
B. 6 a 11
C. a 11
D. 3 a 11
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với cạnh AD = 2CD Biết hai mặt phẳng (SAC), (SBD) cùng vuông góc với mặt đáy và đoạn BD =6 góc giữa (SCZ) và mặt đáy bằng 60 ° Hai điểm M, N lần lượt là trung điểm của SA, SB. Thế tích khối đa diện ABCDMN bằng
A. 128 15 15
B. 16 15 15
C. 18 15 5
D. 108 15 25
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy SA = a 2 . Gọi M, N lần lượt là hình chiếu vuông góc của điểm A trên các cạnh SB, SD (tham khảo hình vẽ). Góc giữa mặt phẳng (AMN) và đường thẳng SB bằng
A. 45 °
B. 60 °
C. 90 °
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, B A D ^ = 60 ° và SA vuông góc với mặt phẳng (ABCD). Góc giữa 2 mặt phẳng (SBD) và (ABCD) bằng 450. Gọi M là điểm đối xứng của C qua B và N là trung điểm của SC. Mặt phẳng (MND) chia khối chóp S.ABCD thành hai khối đa diện, trong đó khối đa diện chứa đỉnh S có thể tích V1, khối đa diện còn lại có thể tích V2 (tham khảo hình vẽ bên). Tính tỉ số V 1 V 2
A. V 1 V 2 = 12 7
B. V 1 V 2 = 5 3
C. V 1 V 2 = 1 5
D. V 1 V 2 = 7 5
Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình chữ nhật cạnh AB = a, AD = a 2 , cạnh bên SA vuông góc với mặt phẳng (ABCD), góc giữa SC và mặt phẳng (ABCD) bằng 60 độ. Gọi M là trung điểm của cạnh SB (tham khảo hình vẽ). Khoảng cách từ điểm M tới mặt phẳng (ABCD) bằng
A. a/2
B. 3a/2
C. 2 a 3
D. a 3
Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh a,SA vuông góc với mặt phẳng (ABCD) Góc giữa mặt phẳng(SBC) ; ( ABCD) bằng 45 ° .Gọi M,N lần lượt là trung điểm AB,AD Tính thể tích khối chóp SCDMN theo a
A. 5 a 3 8
B. a 3 8
C. 5 a 3 24
D. a 3 3
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, và SA vuông góc với mặt phẳng (ABCD). Góc giữa hai mặt phẳng (SBD) và (ABCD) bằng 45 ° . Gọi M là điểm đối xứng của C qua B và N là trung điểm của SC. Mặt phẳng (MND) chia khối chóp S.ABCD thành hai khối đa diện, trong đó khối đa diện chứa đỉnh S có thể tích V 1 khối đa diện còn lại có thể tích V 2 (tham khảo hình vẽ bên đây). Tính tỉ số V 1 V 2
A. V 1 V 2 = 12 7
B. V 1 V 2 = 5 3
C. V 1 V 2 = 1 5
D. V 1 V 2 = 7 5
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a . SA vuông góc với đáy. Góc giữa cạnh bên SB và mặt đáy bằng 60 0 . Gọi M, N lần lượt là trung điểm của SC và SD . Tính thể tích của khối chóp S.AMN
A. V S . A M N = a 3 3 12
B. V S . A M N = a 3 3 24
C. V S . A M N = a 3 3 3
D. V S . A M N = a 3 3 6
Cho hình chóp S.ABCD có đáy là hình vuông cạnh cạnh 2 2 bên SA vuông góc với mặt phẳng đáy và SA = 3 Mặt phẳng qua A và vuông góc với SC cắt cạnh SB, SC, SD lần lượt tại các điểm M, N, P. Thể tích V của khối cầu ngoại tiếp tứ diện CMNP
A. V = 125 π 6
B. V = 32 π 3
C. V = 108 π 3
D. V = 64 2 π 3