\(AB||CD\Rightarrow AB||\left(SCD\right)\)
\(\Rightarrow d\left(AB;SD\right)=d\left(AB;\left(SCD\right)\right)=d\left(A;\left(SCD\right)\right)\)
Từ A kẻ \(AH\perp SD\) (H thuộc SD) \(\Rightarrow AH\perp\left(SCD\right)\)
\(\Rightarrow AH=d\left(A;\left(SCD\right)\right)\)
\(AD=BC=\sqrt{AC^2-AB^2}=a\)
Hệ thức lượng: \(AH=\dfrac{SA.AD}{\sqrt{SA^2+AD^2}}=\dfrac{2a\sqrt{5}}{5}\)