cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB=a, AD=2a , SA=3a và SA vuông góc với (ABCD). Tính góc giữa SD và mặt phẳng ABCD
Cho hình chóp S.ABCD có đáy là hình chữ nhật, AB =a, AD = 2a. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng 45 0 .Gọi M là trung điểm của SD. Tính theo a khoảng cách d từ điểm M đến mặt phẳng (SAC)
A. d = a 1315 89
B. d = a 1513 89
C. d = 2 a 1315 89
D. d = 2 a 1513 89
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật biết AB=a; AD= 2a; SA vuông góc với đáy, SA=a√2. Xác định và tính góc giữa. a) Các đường thẳng SB, SC, SD với mp đáy. b) SC với các mp (SAD) và ( SAB). c) SA với mp (SCD). d) SB và (SAC).
Hình chóp S.ABCD có đáy là hình thang vuông ABCD vuông tại A và D, có AB = 2a, AD = DC = a, có cạnh SA vuông góc với mặt phẳng (ABCD) và SA = a.
a) Chứng minh mặt phẳng (SAD) vuông góc với mặt phẳng (SDC), mặt phẳng (SAC) vuông góc với mặt phẳng (SCB).
b) Gọi φ là góc giữa hai mặt phẳng (SBC) và (ABCD), tính tanφ.
c) Gọi (α) là mặt phẳng chứa SD và vuông góc với mặt phẳng (SAC). Hãy xác định (α) và xác định thiết diện của hình chóp S.ABCD với (α)
Cho hình chóp S. ABCD đáy ABCD là hình chữ nhật, AB=a, AD=2a. Cạnh bên SA vuông góc với đáy (ABCD), SA=2a. Tính tan của góc giữa hai mặt phẳng (SBD) và (ABCD)
A. 1 5
B. 2 5
C. 5
D. 5 2
Cho hình chóp tứ giác S.ABCD có đáy là hình chữ nhật, AB = a, AD = a 2 . Biết SA ⊥ ABCD và góc giữa đường thẳng SC với mặt phẳng đáy bằng 45 0 . Thể tích khối chóp S. ABCD bằng:
A . a 3 2
B . 3 a 3
C . a 3 6
D . a 3 6 3
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = 2a. Biết SA vuông góc với mặt phẳng đáy và SA = 3a. Thể tích hình chóp S.ABCD là:
A. 6 a 3
B. 12 a 3
C. 2 a 3
D. 1 3 a 3
Cho hình chóp S.ABCD có đáy là hình thoi ABCD cạnh a, có góc B A D ^ = 60 o và S A = S B = S D = a 3 2
a) Tính khoảng cách từ S đến mặt phẳng (ABCD) và độ dài cạnh SC.
b) Chứng minh mặt phẳng (SAC) vuông góc với mặt phẳng (ABCD).
c) Chứng minh SB vuông góc với BC.
d) Gọi φ là góc giữa hai mặt phẳng (SBD) và (ABCD). Tính tanφ.
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a, AD = 2a, tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Khoảng cách từ D đến (SBC) bằng 2 a 3 . Tính khoảng cách giữa hai đường thẳng SB và AC.
A . a 10 10
B . a 10 5
C . 2 a 10 5
D . 2 a 5 5