a: \(D\in BD;D\in\left(ABCD\right)\)
Do đó: \(D\in BD\cap\left(ABCD\right)\)
\(B\in BD;B\in\left(ABCD\right)\)
=>\(B\in BD\cap\left(ABCD\right)\)
Do đó: \(BD\cap\left(ABCD\right)=DB\)
b: \(D\in BD;D\in\left(SCD\right)\)
=>\(D=BD\cap\left(SCD\right)\)
c: Xét ΔSAD có \(\dfrac{SE}{SA}=\dfrac{SF}{SD}\)
nên EF//AD
=>EF//(ABCD)
e: EF//AD
\(AD\subset\left(SAD\right)\)
Do đó: EF//(SAD)