Cho hình chóp S.ABCD có đáy abcd là hình bình hành. Gọi M, N, P lần lượt là trung điểm của các cạnh BC, CD, SD
1. Xác định giao tuyến của (SAC) ; (SBD) và chứng minh NP song song với (SBC)
2.Gọi Q là giao điểm của SA với (MNP). Tính tỉ số \(\dfrac{SQ}{SA}\)
Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Gọi M; N’; P lần lượt là trung điểm của các cạnh BC; CD và SA. Gọi E là giao điểm của MN và AD; F là giao điểm của MN và AB. Tìm giao tuyến của (MNP) và (SBC)
A. ME
B. MH trong đó H là giao điểm của SD và PE
C. MK trong đó K là giao điểm của SB và PF
D. đáp án khác
Cho hình chóp tứ giác S.ABCD có AB và CD không song song với nhau. Gọi M, N lần lượt là trung điểm của SC và SA. a, Chứng minh MN //(ABCD). Tìm giao tuyến của (SAC) và (SBD). b, Tìm giao điểm của SD và mặt phẳng (MAB). (câu a chứng minh sơ sơ là đc ạ)
Cho hình chóp S.ABCD có đáy là hình bình hành, tâm O. Gọi M, N lần lượt là trung điểm của AB, CD.
1. Xác định giao tuyến của (SBC) và (SAD).
2. Chứng minh MN // (SBC); MN // (SAD).
3. Gọi I là trung điểm của SA. Tìm giao điểm K của (INM) và SD.
4. Chứng minh SB, SC // (IMN).
5. Gọi H là trung điểm của IO. Chứng minh HK // (SBC).
giải giúp mình với
Cho hình chóp S.ABCD, có đáy ABCD là hình thang có đáy lớn AD . Gọi E, F lần lượt là trung điểm của SA, SD.
a) Tìm giao tuyến của các cặp mặt phẳng: (SAC) và (SBD), (SAD) và (SBC).
b) Chứng minh EF// (ABCD) và EF// (SBC)
c) Gọi K là giao điểm của AB và CD. Tìm M, N lần lượt là giao điểm của SB và (CDE); SC và (EFM). Từ đó, tìm thiết diện của hình chóp cắt bởi mặt phẳng (KEF)
d) Cho AD=2BC. Tính tỉ số diện tích của tam giác KMN và tam giác KEF .
giúp mình giải câu d với ạ
Câu 5: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P lần lượt là trung điểm của các cạnh SB, SD và BC. Gọi E là giao điểm của mặt phẳng (MNP) với cạnh SA. Tính tỉ số SE SA . A. 1 4 . B. 1 2 . C. 1 3 . D. 3
cho hình chóp s.abcd có đáy là hình bình hành. Gọi M,N lần lượt là trung điểm của các cạng SA,SC, và G là trọng tâm của △ABC
a) tìm giao tuyến của hai mặt phẳng (SAC) và (SBD)
b) tìm giao điểm BC và mặt phẳng (GMN)
c) xác định thiết diện của hình chóp khi cắt bởi mặt phẳng (GMN)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, SA ⊥ (ABCD) và S A = a 15 Gọi M, N lần lượt là trung điểm của BC và CD: Chứng minh (SAC) ⊥ (SBD).
Cho hình chóp SABCD , đáy là hình bình hành tâm O. Gọi M , N , P lần lượt là trung điểm SB , SD và OC a) Tìm giao tuyên (MNP) với ( SAC) , tìm giao điểm (MNP) với SA b ) Xác định thiết diện của hình chóp với (MNP) và tìm tỉ số mà (MNP) chia các cạnh SA , BC , CD