Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Azaki

Cho hình chóp tứ giác S.ABCD có AB và CD không song song với nhau. Gọi M, N lần lượt là trung điểm của SC và SA. a, Chứng minh MN //(ABCD). Tìm giao tuyến của (SAC) và (SBD). b, Tìm giao điểm của SD và mặt phẳng (MAB). (câu a chứng minh sơ sơ là đc ạ)

Nguyễn Việt Lâm
30 tháng 12 2021 lúc 12:39

a.

Do M là trung điểm SC, N là trung điểm SA \(\Rightarrow MN\) là đường trung bình tam giác SAC

\(\Rightarrow MN||AC\)

Mà \(AC\in\left(ABCD\right)\Rightarrow MN||\left(ABCD\right)\)

Gọi O là giao điểm AC và BD \(\Rightarrow O=\left(SAC\right)\cap\left(SBD\right)\)

\(S=\left(SAC\right)\cap\left(SBD\right)\Rightarrow SO=\left(SAC\right)\cap\left(SBD\right)\)

b.

Trong mp (ABCD), kéo dài AB và CD cắt nhau tại E

Trong mp (SCD), nối EM cắt SD tại F

\(\Rightarrow F=SD\cap\left(MAB\right)\)

Nguyễn Việt Lâm
30 tháng 12 2021 lúc 12:40

undefined


Các câu hỏi tương tự
Linn
Xem chi tiết
Nguyễn Ngân Hà_11A11
Xem chi tiết
Hoàng Thị Mai
Xem chi tiết
títtt
Xem chi tiết
títtt
Xem chi tiết
Cho Hỏi
Xem chi tiết
Tiến Giàng
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Nguyễn Ngọc Hân
Xem chi tiết