Cho hình chóp S.ABCD đáy ABCD là hình bình hành.. Giao tuyến của hai mặt phẳng (SAD) và (SBC) là đường thẳng song song với đường thẳng nào sau đây?
A. AD
B. BD
C. DC
D. AC
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là điểm di động trên đoạn AB. Qua M vẽ mặt phẳng α song song với mặt phẳng S B C , cắt các cạnh CD, DS, SA lần lượt tại các điểm N, P, Q. Tập hợp các giao điểm I của hai đường thẳng MQ và NP là
A. Một đường thẳng
B. Nửa đường thẳng.
C. Đoạn thẳng song song với AB
D. Tập hợp rỗng
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Điểm M thỏa mãn M A → = 3 M B → Mặt phẳng (P) qua M và song song với hai đường thẳng SC, BD. Mệnh đề nào sau đây đúng?
A. (P) cắt hình chóp theo thiết diện là một tam giác
B. (P) không cắt hình chóp
C. (P) cắt hình chóp theo thiết diện là một ngũ giác
D. (P) cắt hình chóp theo thiết diện là một tứ giác
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Điểm M thỏa mãn M A → = 3 M B → . Mặt phẳng (P) qua M và song song với hai đường thẳng SC, BD. Mệnh đề nào sau đây đúng?
A. (P) cắt hình chóp theo thiết diện là một tam giác
B. (P) không cắt hình chóp
C. (P) cắt hình chóp theo thiết diện là một ngũ giác
D. (P) cắt hình chóp theo thiết diện là một tứ giác
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Điểm M thỏa mãn M A → = 3 M B → . Mặt phẳng (P) qua M và song song với hai đường thẳng SC, BD. Mệnh đề nào sau đây đúng?
A. (P) không cắt hình chóp.
B. (P) cắt hình chóp theo thiết diện là một tứ giác.
C. (P) cắt hình chóp theo thiết diện là một tam giác.
D. (P) cắt hình chóp theo thiết diện là một ngũ giác.
Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Gọi M là điểm di động trên cạnh SC (M không trùng S và C), mặt phẳng (α) chứa đường thẳng AM song song với BD lần lượt cắt các cạnh SB, SD tại E và F. Giá trị T = S B S E + S D S F - S C S M bằng
A. 1
B. 2
C. 1 2
D. 3 2
Cho hình chóp S . A B C D có đáy ABCD là hình bình hành. Gọi M là điểm trên cạnh SC sao cho 5 S M = 2 S C , mặt phẳng α qua A, M và song song với đường thẳng BD cắt hai cạnh SB, SD lần lượt tại H, K. Tính tỉ số thể tích V S . A H M K V S . A B C D
A. 1 5
B. 8 35
C. 1 7
D. 6 35
Cho hình chóp S . A B C D có đáy ABCD là hình bình hành tâm O, A B = 8, S A = S B = 6 . Gọi (P) là mặt phẳng đi qua O và song song với (SAB). Tính diện tích của thiết diện của (P) và hình chóp S . A B C D .
A. 13
B. 12
C. 5 5
D. 6 5
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là điểm trên cạnh SC sao cho 5 S M = 2 S C , mặt phẳng α đi qua A, M và song song với đường thẳng BD cắt hai cạnh SB, SD lần lượt tại hai điểm H, K. Tính tỉ số thể tích V S . A H M K V S . A B C D .
A. 1 5
B. 8 35
C. 1 7
D. 6 35
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, M là trung điểm của AD. Gọi S' là giao điểm của SC với mặt phẳng chứa BM và song song với SA. Tính tỉ số thể tích của hai khối chóp S'.BCDM và S.ABCD
A. 2 3
B. 1 2
C. 1 4
D. 3 4