Chọn D.
- Kẻ AH ⊥ SB.
- Ta có:
- Trong tam giác vuông SAB ta có:
Chọn D.
- Kẻ AH ⊥ SB.
- Ta có:
- Trong tam giác vuông SAB ta có:
Cho hình chóp S.ABC trong đó SA; AB; BC vuông góc với nhau từng đôi một. Biết S A = a 3 , A B = a 3 . Khoảng cách từ A đến (SBC) bằng:
Cho hình chóp S. ABC trong đó SA, SB, SC vuông góc với nhau từng đôi một. Biết SA = 3a, AB = a 3 , BC = a 6 Khoảng cách từ B đến SC bằng:
A. 2 a 3
B. a 3
C. a 2
D. 2 a
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B , AB =a, BC =a 3 Biết rằng SA vuông góc với mặt phẳng đáy và diện tích xung quanh của khối chóp S.ABC bằng 5 a 2 3 2 . Tính theo a khoảng cách d từ A đến mặt phẳng (SBC) gần với giá trị nào nhất sau đây ?
A. 0,72a
B. 0,9a
C. 0,8a
D. 1,12a
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B. AB = BC = a 3 , góc SAB = SCB = 90 0 và khoảng cách từ A đến mặt phẳng (SBC) bằng a 2 . Thể tích khối cầu ngoại tiếp hình chóp S.ABC là
Cho hình chóp SABCD là hình thang vuông tại A và B. AD=2a, SA=a căn 3, AB=BC=a. SA vuông góc với đáy. Tính khoảng cách từ. a)A đến (SBC) b)A đến (SCD) c)BC đến (SAD)
Cho hình chóp S.ABC có SA vuông góc (ABC), đáy là ΔABC vuông tại B, AB=a, \(BC=a\sqrt{3}\), \(SA=\dfrac{a\sqrt{6}}{2}\). Tính góc((SAC);(SBC))
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với đáy. Biết SA = a AB = 2a RC = a * sqrt(3) a) Chứng minh CD. (SAD) SD và (ABCD). c) Tính khoảng cách từ điểm D đến (SBC). b) Tính góc giữa
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với đáy. Biết SA = a AB = 2a RC = a * sqrt(3)
a) Chứng minh CD. (SAD) SD và (ABCD).b) Tính góc giữac) Tính khoảng cách từ điểm D đến (SBC).Chóp SABCD , ABCD là hình chữ nhật tâm O SA=5a ; AB=2a ; AD=a căn 3 ; SA vuông góc với đáy a) Cm BC vuông góc (SAB) ; CD vuông góc (SAD ) ; (SCD) vuông góc (SAD) b) Tính góc (SC:SAD) ; (SC:SAD) ; (SC:ABCD) c) Tính khoảng cách từ A đến (SBC) và d(A,(SCD)) d)Tính góc giữa 2 mp (SBD) và (ABCD) ; (SCD) và (ABCD)