Đáp án là D
Gọi H là trung điểm của BC, ta có: AH ⊥ BC
Do SA ⊥ (ABC)
Ta có:
Xét tam giác vuông SAH:
Đáp án là D
Gọi H là trung điểm của BC, ta có: AH ⊥ BC
Do SA ⊥ (ABC)
Ta có:
Xét tam giác vuông SAH:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, SA vuông góc với đáy, góc giữa SC và mặt đáy bằng 60 0 , AB = a (a > 0). Thể tích của khối chóp S.ABC là:
A . a 3 3 6
B . a 3 6
C . a 3 3 2
D . a 3 3 3
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B. AB = BC = a 3 , góc SAB = SCB = 90 0 và khoảng cách từ A đến mặt phẳng (SBC) bằng a 2 . Thể tích khối cầu ngoại tiếp hình chóp S.ABC là
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, A B = 2 a , S A vuông góc với mặt đáy và góc giữa SB với mặt đáy bằng 60 ° . Côsin góc giữa hai mặt phẳng (SBC) và (ABC) bằng
Cho hình chóp S.ABC có đáy ABC là tam giác cân tại A, AB = AC = a 3 và góc A B C ^ = 30 0 .Biết SA vuông góc với mặt phẳng đáy và SC = 2a. Thể tích hình chóp là:
A . 3 a 3 3 4
B . a 3 3 4
C . a 3 3 2
D . 3 a 3 3 2
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A. Biết SA vuông góc với mặt phẳng đáy và SB = a 10 , BC = 2a, SC = 2a 3 . Thể tích khối chóp S.ABC là:
A . 3 a 3 2
B . 3 a 3 2
C . 3 a 3
D . a 3
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại C ; SA vuông góc với đáy; SC = a. Gọi α là góc giữa hai mặt phẳng (SBC) và (ABC). Tính để thể tích khối chóp S.ABC lớn nhất
Cho hình chóp S.ABC có đáy là tam giác ABC vuông cân tại A, SA ⊥ (ABC). Góc giữa (SBC) và (ABC) bằng 30°. Thể tích của khối chóp S.ABC là:
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với đáy ABC, góc giữa hai mặt phẳng (SBC) và (ABC) bằng 60°. Tính thể tích V của khối chóp S.ABC.
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B , AB =a, BC =a 3 Biết rằng SA vuông góc với mặt phẳng đáy và diện tích xung quanh của khối chóp S.ABC bằng 5 a 2 3 2 . Tính theo a khoảng cách d từ A đến mặt phẳng (SBC) gần với giá trị nào nhất sau đây ?
A. 0,72a
B. 0,9a
C. 0,8a
D. 1,12a