Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, SA vuông góc với đáy, khoảng cách từ A đến mặt phẳng (SBC) bằng 3. Gọi α là góc giữa hai mặt phẳng (SBC) và (ABC), tính cos α khi thể tích khối chóp S . A B C nhỏ nhất.
A. cos α = 2 2
B. cos α = 1 3
C. cos α = 3 3
D. cos α = 2 3
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B với AB=a và BAC= 30 ° Hai mặt phẳng (SAB) và (SAC) cùng vuông góc với mặt phẳng (ABC) Tính khoảng cách d từ điểm A đến mặt phẳng (SBC) biết khối chóp S.ABC có thể tích bằng a 3 3 36
A. d = a 2 4
B. d = a 3
C. d = a 5 3
D. d = a 3 6
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với đáy ABC, góc giữa hai mặt phẳng S B C và A B C bằng 60°. Tính thể tích V của khối chóp S.ABC.
A. a 3 3 8
B. a 3 3 24
C. a 3 3 6
D. a 3 3 3
Cho hình chóp S.ABC có SA vuông góc với (ABC) tam giác ABC là tam giác vuông cân tại A,AB = 2a góc giữa (SBC) và mặt đáy bằng 60 ° Thể tích khối chóp S.ABC là:
A. 125 2 a 3 6
B. 3 6 a 3 4
C. 16 2 a 3 3
D. 2 6 a 3 3
Cho hình chóp S.ABC có tam giác ABC vuông cân tại B , A C = a 2 , mặt phẳng (SAC) vuông góc với mặt đáy (ABC). Các mặt bên S A B , S B C tạo với mặt đáy các góc bằng nhau và bằng 60 ° . Tính theo a thể tích V của khối chóp S.ABC
A. V = 3 a 3 2
B. V = 3 a 3 4 V = 3 a 3 12
C. V = 3 a 3 6
D. V = 3 a 3 12
Cho hình chóp S.ABC có tam giác ABC vuông tại A, BC = 2a, góc ACB = 60 ° . Mặt phẳng (SAB) vuông góc với mặt phẳng (ABC), tam giác SAB cân tại S, tam giác SBC vuông tại S. Thể tích khối chóp S.ABC là:
A. a 3 2
B. a 3 4
C. a 3 8
D. a 3 16
Cho hình chóp S.ABC có đáy là tam giác vuông cân ở A, cạnh BC=2 3 a. Tam giác SBC cân tại S và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Biết thể tích khối chóp là a 3 , tính góc giữa SA và mặt phẳng (SBC).
A. π /6
B. π /3
C. π /4
D. arctan 3 2
Cho hình chóp S.ABC có đáy ABC là tam giác cân tại A,AB=AC=a 3 và góc A B C ⏞ = 30 ° .Biết SA vuông góc với mặt phẳng đáy và SC=2a . Thể tích hình chóp S.ABC là:
A. 3 a 3 3 4
B. a 3 3 4
C. a 3 3 2
D. 3 a 3 3 2
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại C ; SA vuông góc với đáy; SC = a. Gọi α là góc giữa hai mặt phẳng (SBC) và (ABC). Tính sin α để thể tích khối chóp S.ABC lớn nhất
A. sin α = 1 3
B. sin α = 1 3
C. sin α = 2 3
D. sin α = 6 3